首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Conditional lethality of the Escherichia coli polA12 uvrE502 double mutant may be overcome by a mutation that has been termed polA350. The polA350 mutation restored the polymerizing activity of deoxyribonucleic acid polymerase I at 42 C in the polA12 mutant and partially suppressed ultraviolet (UV) and methylmethane sulfonate sensitivities of the polA12. Mapping experiments have located polA350 between metE and polA12, very close to the latter. The strain carrying polA12 polA350 and recB21 was viable at 42 C. The effects of the recB21 and polA12 polA350 combination on the UV sensitivity were additive. The triple mutant polA12 polA350 uvrE502 was more UV sensitive than the single uvrE502 mutant.  相似文献   

3.
Spectra of ionizing radiation mutagenesis were determined by sequencing X-ray-induced endogenous tonB gene mutations in Escherichia coli polA strains. We used two polA alleles, the polA1 mutation, defective for Klenow domain, and the polA107 mutation, defective for flap domain. We demonstrated that irradiation of 75 and 50 Gy X-rays could induce 3.8- and 2.6-fold more of tonB mutation in polA1 and polA107 strains, respectively, than spontaneous level. The radiation induced spectrum of 51 tonB mutations in polA1 and 51 in polA107 indicated that minus frameshift, A:T-->T:A transversion and G:C-->T:A transversion were the types of mutations increased. Previously, we have reported essentially the same X-ray-induced tonB mutation spectra in the wild-type strain. These results indicate that (1) X-rays can induce minus frameshift, A:T-->T:A transversion and G:C-->T:A transversion in E. coli and (2) presence or absence of polymerase I (PolI) of E. coli does not have any effects on the process of X-ray mutagenesis.  相似文献   

4.
The mutagenic potential of 9-[(3-dimethylaminopropyl)amino]-acridine and its 1-, 2-, 3- and 4-nitro derivatives was studied in several strains of Salmonella typhimurium carrying the frameshift marker hisC3076. The strains all carried deep rough (rfa) mutations, and were either wild-type with respect to DNA repair capacity or carried recA, uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without plasmid pKM101 were also studied. The des-nitro compound resembled 9 aminoacridine and other simple intercalating compounds. Both toxicity and mutagenesis were apparently unaffected by the uvrB and recA mutations or by the presence of plasmid pKM101. However, mutagenicity was reduced by the polA1 mutation, and virtually eliminated by the polA3 mutation. The drug was substantially more toxic in the latter, slightly more toxic in the former, of these polA- strains. Plasmid pKM101 enhanced mutagenesis and protected from toxicity in both polA1- and polA3- strains, although it did not restore either of these parameters to the level in the wild-type strain. The 2-nitro compound was generally similar to the des-nitro compound, except that it was considerably more toxic and apparently non-mutagenic in the recA-bearing strain. By contrast, mutagenicity of the 3- and 4-nitro compounds was enhanced by the uvrB mutation and by the presence of the plasmid. These compounds were highly toxic but non-mutagenic in the recA- strain, and showed some increased toxicity in polA1- and polA3- strains. The 1-nitro compound has been previously found to cross-link DNA. Unlike well-characterised cross-linkers such as mitomycin C it was highly mutagenic in the uvrB- strain, and this mutagenesis was enhanced by plasmid pKM101, but eliminated by the recA mutation. At high doses, where the drug was completely toxic towards uvrB- or recA-carrying strains, it became mutagenic in the DNA-repair-proficient strains. This 'high-dose' mutagenesis was enhanced by plasmid pKM101, but reduced by the polA1 mutation and almost eliminated by the polA3 mutation. Although there are several possible interpretations of these data, they are compatible with the suggestion that the lesion induced by high doses (but not by low doses) of nitracrine is a cross-link, but that this is not the major mutagenic lesion.  相似文献   

5.
The induction of mutations to valine resistance and to rifampin resistance occurs after UV irradiation in bacteria carrying a deletion through the polA gene (delta polA), showing that DNA polymerase I (PolI) is not an essential enzyme for this process. The PolI deletion strain showed a 7- to 10-fold-higher spontaneous mutation frequency than the wild type. The presence in the deletion strain of the 5'----3' exonuclease fragment on an F' episome caused an additional 10-fold increase in spontaneous mutation frequency, resulting in mutation frequencies on the order of 50- to 100-fold greater than wild type. The mutator effect associated with the 5'----3' exonuclease gene fragment together with much of the effect attributable to the polA deletion was blocked in bacteria carrying a umuC mutation. The mutator activity therefore appears to reflect constitutive SOS induction. Excision-proficient polA deletion strains exhibited increased sensitivity to the lethal effect of UV light which was only partially ameliorated by the presence of polA+ on an F' episome. The UV-induced mutation rate to rifampin resistance was marginally lower in delta polA bacteria than in bacteria carrying the polA+ allele. This effect is unlikely to be caused by the existence of a PolI-dependent mutagenic pathway and is probably an indirect effect caused by an alteration in the pattern of excision repair, since it did not occur in excision-deficient (uvrA) bacteria. An excision-deficient polA deletion strain possessed UV sensitivity similar to that of an isogenic strain carrying polA+ on an F' episome, showing that none of the functions of PolI are needed for postreplication repair in the absence of excision repair. Our data provide no evidence for a pathway of UV mutagenesis dependent on PolI, although it remains an open question whether PolI is able to participate when it is present.  相似文献   

6.
A large range of acridines, including several anilinoacridines which are active as antitumour agents, have been studied for their ability to revert derivatives of Salmonella typhimurium strains carrying the frameshift marker hisC3076. The strains used all carried deep-rough (rfa) mutations, and were either wild-type with respect to DNA-repair capacity or carried uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without the mutation-enhancing N group plasmid pKM101 were also used. 9-Aminoacridine and other acridines appeared similar to the anilinoacridines for the most part, in that frameshift mutagenesis and toxicity appeared to be unaffected by the uvrB mutation or by the presence of plasmid pKM101. Exceptions were ICR191, 3-NO2-acridine and 1- or 3-NO2-anilinoacridine derivatives in which mutagenesis was increased in uvrB strains and also when pKM101 was present. These compounds were slightly more toxic in the uvrB background, but less toxic when pKM101 was present in either the uvrB or wild-type backgrounds. Mutagenesis by most compounds was reduced by the polA1 mutation and virtually eliminated (except in the case of ICR191) by the polA3 mutation. Plasmid pKM101 occasionally enhanced mutagenesis in the polA1 strain, whereas in the polA3 it appeared to have no effect whatsoever. Again, there were no obvious differences in toxicity between Pol+ and Pol- strains.  相似文献   

7.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

8.
Strains carrying either the polA1 or resA1 mutation are deficient in DNA polymerase I, and the polA1 and resA1 mutations do not complement in merozygotes. The effect of these mutations in otherwise identical genetic backgrounds was studied: after ultraviolet irradiation both strains degrade their DNA more rapidly and more extensively than the wild-type strains. However, after X-ray irradiation the resA1 strain shows little DNA breakdown and repairs its single-strand breaks. In contrast, the polA1 strain degrades its DNA extensively, and single-strand breaks are not repaired. Moreover, the resA1 strain is capable of supporting the growth of a red(-) bacteriophage lambda, whereas the polA1 strain is not.  相似文献   

9.
Besides producing thymine-requiring mutants (thy), trimethoprim (TMP) cured the mini-ColE1 replicon pML21 at an appreciable frequency. The cured Escherichia coli K-12 cells behaved like polA mutants by failing to support the stable maintenance of the ColE1 plasmid. The mini-F replicon pSC138, which was lacking all three insertion sequences (IS3, gammadelta, and IS2) normally used for F-specific integration and excision, was not cured by TMP. Instead, it integrated into specific regions of the E. coli chromosome and thus caused auxotrophic mutations in operons which were always localized on either side of oriC (origin of chromosomal replication). The incompatibility and replication functions of the integrated plasmid in auxotrophs were retained, and the plasmid DNAs recovered from spontaneously occurring revertants did not show any alterations in their contour lengths as determined by electron microscopy. The F replicon (fragment 5) contained in plasmid pSC138 carried two origins of replication, the primary origin, oriV(1) at 42.6F and the secondary origin, oriV(2), at 44.1F. Another mini-F plasmid pMF21, deleted of the primary origin of replication (oriV(1)), was still capable of autonomous replication but failed to integrate onto the chromosome after TMP treatment. Furthermore, the composite plasmid pRS5, which normally uses only the replication origin and functions of the pSC101 component, was also insensitive to TMP. On the basis of these results, we propose a new scheme of F integration via the functional oriV(1) and suggest the involvement of a similar mechanism in the formation of Hfr strains by integrative suppression.  相似文献   

10.
We have previously demonstrated that the Escherichia coli strain mutS ΔpolA had a higher rate of transition and minus frameshift mutations than mutS or ΔpolA strains. We argued that DNA polymerase I (PolI) corrects transition mismatches. PolI, encoded by the polA gene, possesses Klenow and 5′ → 3′ exonuclease domains. In the present study, rates of mutation were found to be higher in Klenow-defective mutS strains and 5′ → 3′ exonuclease-defective mutS strains than mutS or polA strains. The Klenow-defective or 5′ → 3′ exonuclease-defective mutS strains showed a marked increase in transition mutations. Sites of transition mutations in mutS, Klenow-defective mutS and 5′ → 3′ exonuclease-defective mutS strains are different. Thus, it is suggested that, in addition to mutS function, both the Klenow and 5′ → 3′ exonuclease domains are involved in the decrease of transition mutations. Transition hot and warm spots in mutS + polA + strains were found to differ from those in mutS and mutS ΔpolA strains. We thus argue that all the spontaneous transition mutations in the wild-type strain do not arise from transition mismatches left unrepaired by the MutS system or MutS PolI system.  相似文献   

11.
E. coli strains bearing the recA441 mutation and various mutations in the polA gene resulting in enzymatically well-defined deficiencies of DNA polymerase I have been constructed. It was found that the recA441 strains bearing either the polA1 or polA12 mutation causing deficiency of the polymerase activity of pol I are unable to grow at 42 degrees C on minimal medium supplemented with adenine, i.e., when the SOS response is continuously induced in strains bearing the recA441 mutation. Under these conditions the inhibition of DNA synthesis is followed in recA441 polA12 by DNA degradation and loss of cell viability. A similar lethal effect is observed with the recA730 polA12 mutant. The recA441 strain bearing the polA107 mutation resulting in the deficiency of the 5'-3' exonuclease activity of pol I shows normal growth under conditions of continuous SOS response. We postulate that constitutive expression of the SOS response leads to an altered requirement for the polymerase activity of pol I.  相似文献   

12.
Escherichia coli strain E247 (polA1 recB21) has reduced colony formation (even at the permissive temperature of 30 degrees C) because of a poor suppressor mutation (sup-126). The colony formation was enhanced in the absence of oxygen about 3-fold at 30 degrees C and 10(6)-fold at 43 degrees C, suggesting that a polA recB strain was inviable due to oxygen toxicity. Colony formation was also increased by incubation in an agar medium containing the reducing agent thioglycolate and incubation in the presence of chloroform-killed Saccharomyces cerevisiae pet+ cells, but not pet cells. Since the E247 strain viability was inversely dependent on the oxygen pressure and since the strain was more sensitive to superoxide radical than either the polA or the recB mutant, it seems likely that the polA and recB genes play a role in repairing DNA damage during respiration.  相似文献   

13.
We have found that a temperature-sensitive mutation in the polA gene of Salmonella typhimurium strain LT2 causes precise excision of transposon Tn10 to occur at significantly increased frequencies in cells incubated at the restrictive temperature. In our experiments, precise excision from a site in the tryptophan operon was measured by determining the frequency of reversion of the auxotrophic trp1014::Tn10 polA7 strain to prototrophy on defined medium containing a trace amount of broth. Because the yields of revertants at 37 degrees C were of the order of 200 colonies per plate, it was possible to measure the effects of chemical inhibitors on the processes involved in precise excision. We now report that all of the DNA-repair inhibitors we have studied (caffeine, ethionine, acriflavine, procaine and cinnamaldehyde) are effective inhibitors of precise excision of Tn10, and can therefore be defined as antimutagens.  相似文献   

14.
By DNA sequence analysis, we have determined a spectrum of 61 spontaneous mutations occurring in the endogenous tonB gene in the polA1 strain of Escherichia coli. The overall mutation frequency was approximately 2.4-fold higher in the polA1 strain and this was attributable to enhanced rates of deletion and frameshift mutations. Among 39 deletions, a hot spot (17 mutations) was detected: a 13-bp deletion presumably directed by a 3-bp repeated sequence at its end points. The remaining 22 were distributed among 19 different mutations either flanked (16/19) or not flanked (3/19) by repeated sequences. Single-base frameshifts accounted for 8 mutations of either repeated (3/8) or nonrepeated (5/8) bases among which 6 were minus one frameshift. In contrast to previous reports, we did not frequently observe a 5'-GTGG-3' sequence in the vicinity of the deletions and frameshifts. The results presented here indicated an anti-deletion and anti-frameshift role for DNA polymerase I.  相似文献   

15.
Investigations were carried out to determine whether both DNA strands involved in Escherichia coli chromosomal DNA replication are replicated with similar accuracy. Experiments consisted of measuring the forward mutation rate from tonB(+) to tonB(-) in pairs of polA deficient strains in which the chromosomal target gene tonB was oriented in the two possible directions relative to the origin of replication, oriC. Within these pairs, the tonB sequence would be subjected to leading strand replication in one orientation and to lagging strand replication in the other. The most common tonB mutations in the polA1 strain were deletions followed by frameshifts. Among the deletions, a strong hotspot site with a 13-base deletion in the polA1 strains accounted for 18 of the 33 deletions in the one orientation, and 31 of the 58 deletions in the other. The results suggested that the two strands were replicated with equal or similar accuracy for deletion formation.  相似文献   

16.
The 2,053-bp broad-host-range incompatibility group N replicon of plasmid pCU1 has two components: a region of 1,200 bp that is sufficient for its replication in Escherichia coli PolA+ and PolA- hosts and a regulatory region called the group I iteron region that contains 13 39-bp iterons. Within the 1,200-bp region, there are three replication origins, two of which, called oriB and oriS, function in PolA+ and PolA- hosts and a third, called oriV, which functions only in PolA+ hosts. The region also specifies a protein called RepA. We now show that both oriB and oriS can function in a delta polA strain but that in such a strain, only oriB has an absolute requirement for RepA. oriS can function without RepA and polymerase I provided that the iteron region is deleted and that in this circumstance, it is the only origin, the usage of which is detected. The requirements for oriB usage can thus be distinguished from those for oriS usage. The oriB region can be recovered as a plasmid only if RepA is provided in trans. These complex features of this replicon are also shown to be shared by the IncN replicons of other antibiotic resistance plasmids. Functionally distinguishable origins in a small replicon may be a way of endowing such a replicon with a broad host range.  相似文献   

17.
The sensitivity of a polA strain to the antibacterial activity of mutagens and carcinogens may be increased by inserting one or both of the following characteristics, a lexA mutation or the R391 bacterial plasmid. The effects of the lexA mutation and the plasmid appear to be additive. The differential sensitivity of a polA lexA (R391) strain could be adapted as a preliminary screening test for mutagens and potential carcinogens.  相似文献   

18.
The cold-sensitive fcsA29 mutation of Escherichia coli was found to be a new type of cold-sensitive allele of the polA gene encoding DNA polymerase I, caused by an Asp(116)-->Asn change in the 5'-->3' exonuclease domain. The fcsA29 mutant showed typical polA mutant phenotypes such as UV sensitivity and unacceptability of recA mutation. Cold-sensitive growth of the mutant was suppressed by introduction of a sulA mutation, indicating that cell filamentation was due to the SOS response.  相似文献   

19.
A trp-lac fusion strain of Escherichia coli in which the lac structural genes are part of the tryptophan operon has been used to isolate trp regulatory mutants. This was accomplished by isolating lac(+) colonies on either lactose-minimal agar or lactose-MacConkey indicator agar. Seventy-seven of 78 lac(+) isolates contained mutations which mapped near the ara locus and most of these isolates were found to be 5-methyltryptophan-resistant after introduction of an F-trp episome. The lac(+) phenotypes of these 77 isolates were therefore probably the result of trpR(-) mutations. The one remaining isolate carried a mutation which was not part of the trp regulatory system.  相似文献   

20.
We have isolated a strain of Escherichia coli K-12 carrying a mutation, polA12, that results in the synthesis of a temperature-sensitive deoxyribonucleic acid (DNA) polymerase I. The double mutants polA12 recA56 and polA12 recB21, constructed at 30 C, are inviable at 42 C. About 90% of the cells of both double mutants die after 2 hr of incubation at 42 C. Both double mutants filament at 42 C and show a dependence on high cell density for growth at 30 C. In polA12 recB21 cells at 42 C, DNA and protein synthesis gradually stop in parallel. In polA12 recA56 cells, DNA synthesis continues for at least 1 hr at 42 C, and there is extensive DNA degradation. The results suggest that the primary lesion in these double mutants is not in DNA replication per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号