首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lipid rafts: bringing order to chaos   总被引:27,自引:0,他引:27  
Lipid rafts are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. Rafts appear to be small in size, but may constitute a relatively large fraction of the plasma membrane. While rafts have a distinctive protein and lipid composition, all rafts do not appear to be identical in terms of either the proteins or the lipids that they contain. A variety of proteins, especially those involved in cell signaling, have been shown to partition into lipid rafts. As a result, lipid rafts are thought to be involved in the regulation of signal transduction. Experimental evidence suggests that there are probably several different mechanisms through which rafts control cell signaling. For example, rafts may contain incomplete signaling pathways that are activated when a receptor or other required molecule is recruited into the raft. Rafts may also be important in limiting signaling, either by physical sequestration of signaling components to block nonspecific interactions, or by suppressing the intrinsic activity of signaling proteins present within rafts. This review provides an overview of the physical characteristics of lipid rafts and summarizes studies that have helped to elucidate the role of lipid rafts in signaling via receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

3.
4.
5.
While the seven classes within the phylum Mollusca are clearly defined morphologically and molecularly, relationships between them have long been contentious. Two recent phylogenomic studies take an important step forward with intriguing implications for their evolution.  相似文献   

6.
Bringing order to the glutamate chaos in schizophrenia   总被引:14,自引:0,他引:14  
Moghaddam B 《Neuron》2003,40(5):881-884
Recent genetic linkage studies complement the existing evidence that implicates abnormalities in NMDA receptor-mediated neurotransmission in the pathophysiology of schizophrenia. At the same time, advances in our understanding of the complex mechanisms that modulate the function of NMDA receptors suggest several novel sites for pharmacological manipulation of these receptors. This presents exciting opportunities for rational rather than serendipitous discovery of therapeutics for schizophrenia.  相似文献   

7.
Mitochondria are dynamic organelles that constantly undergo fission, fusion, and movement. Increasing evidence indicates that these dynamic changes are intricately related to mitochondrial function, suggesting that mitochondrial form and function are linked. Calcium (Ca2+) is one signal that has been shown to both regulate mitochondrial fission in various cell types and stimulate mitochondrial enzymes involved in ATP generation. However, although Ca2+ plays an important role in adult cardiac muscle cells for excitation–metabolism coupling, little is known about whether Ca2+ can regulate their mitochondrial morphology. Therefore, we tested the role of Ca2+ in regulating cardiac mitochondrial fission. We found that neonatal and adult cardiomyocyte mitochondria undergo rapid and transient fragmentation upon a thapsigargin (TG)- or KCl-induced cytosolic Ca2+ increase. The mitochondrial fission protein, DLP1, participates in this mitochondrial fragmentation, suggesting that cardiac mitochondrial fission machinery may be regulated by intracellular Ca2+ signaling. Moreover, the TG-induced fragmentation was also associated with an increase in reactive oxygen species (ROS) formation, suggesting that activation of mitochondrial fission machinery is an early event for Ca2+-mediated ROS generation in cardiac myocytes. These results suggest that Ca2+, an important regulator of muscle contraction and energy generation, also dynamically regulates mitochondrial morphology and ROS generation in cardiac myocytes.  相似文献   

8.
Although mitochondrial oxidative catabolism of fatty acid (FA) is a major energy source for the adult mammalian heart, cardiac lipotoxity resulting from elevated serum FA and enhanced FA use has been implicated in the pathogenesis of heart failure. To investigate the effects of intermediates of FA metabolism [palmitoyl-l-carnitine (Pal-car) and palmitoyl-CoA (Pal-CoA)] on mitochondrial function, we measured membrane potential (DeltaPsi(m)), opening of the mitochondrial permeability transition pore (mPTP), and the production of ROS in saponin-treated rat ventricular myocytes with a laser scanning confocal microscope. Our results revealed that 1) lower concentrations of Pal-car (1 and 5 muM) caused a slight hyperpolarization of DeltaPsi(m) [tetramethylrhodamine ethyl ester (TMRE) intensity increased to 115.5 +/- 5.4% and 110.7 +/- 1.6% of baseline, respectively, P < 0.05] but did not open the mPTP, 2) a higher concentration of Pal-car (10 microM) depolarized DeltaPsi(m) (TMRE intensity decreased to 61.9 +/- 12.2% of baseline, P < 0.01) and opened the mPTP (calcein intensity decreased to 70.7 +/- 2.8% of baseline, P < 0.01), 3) Pal-CoA depolarized DeltaPsi(m) without opening the mPTP, and 4) only the higher concentration of Pal-car (10 muM) increased ROS generation (2',7'-dichlorofluorescein diacetate intensity increased to 3.4 +/- 0.3-fold of baseline). We concluded that excessive exogenous intermediates of long-chain saturated FA may disturb mitochondrial function in different ways between Pal-car and Pal-CoA. The distinct mechanisms of the deteriorating effects of long-chain FA on mitochondrial function are important for our understanding of the development of cardiac diseases in systemic metabolic disorders.  相似文献   

9.
Bird mitochondrial gene order: insight from 3 warbler mitochondrial genomes   总被引:1,自引:0,他引:1  
Two main gene orders exist in birds: the ancestral gene order and the remnant control region (CR) 2 gene order. These gene orders differ by the presence of 1 or 2 copies of the CR, respectively. Among songbirds, Oscines were thought to follow the ancestral gene order, with the exception of the lyrebird and Phylloscopus warblers. Here, we determined the complete mitochondrial genome sequence of 3 non-Phylloscopus warblers species and found that the blackcap (Sylvia atricapilla) and the reed warbler (Acrocephalus scirpaceus) have 2 almost identical copies of the CR, whereas the eastern orphean warbler (Sylvia crassirostris) follows the remnant CR 2 gene order. Our results contradict previous studies suggesting that Acrocephalus and most sylvioid warblers exhibit the ancestral gene order. We were able to trace this contradiction to a misidentification of gene order from polymerase chain reaction length determination. We thus suggest that passerine gene order evolution needs to be revised.  相似文献   

10.
Net calcium exchange has been measured in a suspension of cardiac myocytes after treatment with digitonin. The exchange is believed to be across the mitochondrial membranes and can be stimulated or inhibited by agents augmenting or blocking mitochondrial electron transport. The uptake of calcium shows a strong dependence on suspension pCa but is not evident below 1 microM (pCa 6.0). It is suggested that the net calcium exchange is a balance of the two processes which are equivalent at pCa 6.0. The measurement of mitochondrial specific activity for calcium uptake allows a calculation of the rapidity with which the cardiac mitochondria would affect sarcoplasmic calcium after a sudden rise. It is suggested that the organelle could partly affect relaxation especially at the peak of contraction.  相似文献   

11.
Bacterial genomes have been viewed as collections of genes, with each gene and genome evolving more-or-less independently through the acquisition of mutational changes. This historical view has been overturned by the finding that genomes of even closely-related taxa differ widely in gene content. Yet, genomes are more than ever-shuffling collections of genes. Some genes within a genome are more transient than others, conferring a layer of phenotypic lability over a core of genotypic stability; this core decreases in size as the taxa included become increasingly diverse. In addition, some lineages no longer experience high rates of gene turnover, and gene content alters primarily through slow rates of gene loss. More importantly, the cell and molecular biology of the bacterial cell imposes constraints on chromosome composition, maintaining a stable architecture in the face of gene turnover. As a result, genomes reflect the sum of processes that introduce variability, which is then arbitrated by processes that maintain stability.  相似文献   

12.
Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes   总被引:22,自引:0,他引:22  
A technique is presented that allows neonatal rat cardiac myocytes to form spontaneously and coherently beating 3-dimensional engineered heart tissue (EHT) in vitro, either as a plane biconcaval matrix anchored at both sides on Velcro-coated silicone tubes or as a ring. Contractile activity was monitored in standard organ baths or continuously in a CO(2) incubator for up to 18 days (=26 days after casting). Long-term measurements showed an increase in force between days 8 and 18 after casting and stable forces thereafter. At day 10, the twitch amplitude (TA) of electrically paced EHTs (average length x width x thickness, 11 x 6 x 0.4 mm) was 0.51 mN at length of maximal force development (L(max)) and a maximally effective calcium concentration. EHTs showed typical features of neonatal rat heart: a positive force-length and a negative force-frequency relation, high sensitivity to calcium (EC(50) 0.24 mM), modest positive inotropic (increase in TA by 46%) and pronounced positive lusitropic effect of isoprenaline (decrease in twitch duration by 21%). Both effects of isoprenaline were sensitive to the muscarinic receptor agonist carbachol in a pertussis toxin-sensitive manner. Adenovirus-mediated gene transfer of beta-galactosidase into EHTs reached 100% efficiency. In summary, EHTs retain many of the physiological characteristics of rat cardiac tissue and allow efficient gene transfer with subsequent force measurement.  相似文献   

13.
Although recent studies focused on the contribution of mitochondrial Ca2+ to the mechanisms of ischemia-reperfusion injury, the regulation of mitochondrial Ca2+ under pathophysiological conditions remains largely unclear. By using saponin-permeabilized rat myocytes, we measured mitochondrial membrane potential (DeltaPsi(m)) and mitochondrial Ca2+ concentration ([Ca2+](m)) at the physiological range of cytosolic Ca2+ concentration ([Ca2+](c); 300 nM) and investigated the regulation of [Ca2+](m) during both normal and dissipated DeltaPsi(m). When DeltaPsi(m) was partially depolarized by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP, 0.01-0.1 microM), there were dose-dependent decreases in [Ca2+](m). When complete DeltaPsi(m) dissipation was achieved by FCCP (0.3-1 microM), [Ca2+](m) remained at one-half of the control level despite no Ca2+ influx via the Ca2+ uniporter. The DeltaPsi(m) dissipation by FCCP accelerated calcein leakage from mitochondria in a cyclosporin A (CsA)-sensitive manner, which indicates that DeltaPsi(m) dissipation opened the mitochondrial permeability transition pore (mPTP). After FCCP addition, inhibition of the mPTP by CsA caused further [Ca2+](m) reduction; however, inhibition of mitochondrial Na+/Ca2+ exchange (mitoNCX) by a Na+-free solution abolished this [Ca2+](m) reduction. Cytosolic Na(+) concentrations that yielded one-half maximal activity levels for mitoNCX were 3.6 mM at normal DeltaPsi(m) and 7.6 mM at DeltaPsi(m) dissipation. We conclude that 1) the mitochondrial Ca2+ uniporter accumulates Ca2+ in a manner that is dependent on DeltaPsi(m) at the physiological range of [Ca2+](c); 2) DeltaPsi(m) dissipation opens the mPTP and results in Ca2+ influx to mitochondria; and 3) although mitoNCX activity is impaired, mitoNCX extrudes Ca2+ from the matrix even after DeltaPsi(m) dissipation.  相似文献   

14.
Duchenne muscular dystrophy (DMD) is a lethal degenerative disease of skeletal muscle, characterized by the absence of the cytoskeletal protein dystrophin. Some DMD patients show a dilated cardiomyopathy leading to heart failure. This study explores the possibility that dystrophin is involved in the regulation of a stretch-activated channel (SAC), which in the absence of dystrophin has increased activity and allows greater Ca(2+) into cardiomyocytes. Because cardiac failure only appears late in the progression of DMD, we examined age-related effects in the mdx mouse, an animal model of DMD. Ca(2+) measurements using a fluorescent Ca(2+)-sensitive dye fluo-4 were performed on single ventricular myocytes from mdx and wild-type mice. Immunoblotting and immunohistochemistry were performed on whole hearts to determine expression levels of key proteins involved in excitation-contraction coupling. Old mdx mice had raised resting intracellular Ca(2+) concentration ([Ca(2+)](i)). Isolated ventricular myocytes from young and old mdx mice displayed abnormal Ca(2+) transients, increased protein expression of the ryanodine receptor, and decreased protein expression of serine-16-phosphorylated phospholamban. Caffeine-induced Ca(2+) transients showed that the Na(+)/Ca(2+) exchanger function was increased in old mdx mice. Two SAC inhibitors streptomycin and GsMTx-4 both reduced resting [Ca(2+)](i) in old mdx mice, suggesting that SACs may be involved in the Ca(2+)-handling abnormalities in these animals. This finding was supported by immunoblotting data, which demonstrated that old mdx mice had increased protein expression of canonical transient receptor potential channel 1, a likely candidate protein for SACs. SACs may play a role in the pathogenesis of the heart failure associated with DMD. Early in the disease process and before the onset of clinical symptoms increased, SAC activity may underlie the abnormal Ca(2+) handling in young mdx mice.  相似文献   

15.
Zhu J  Liu M  Kennedy RH  Liu SJ 《Cytokine》2006,34(1-2):96-105
Tumor necrosis factor (TNF)-alpha has been shown to induce apoptosis in a variety of cell types including cardiac myocytes. Sphingosine/ceramide and nitric oxide have been associated with apoptosis induced by TNF-alpha; however, signaling mechanisms of TNF-alpha-induced apoptosis in cardiac myocytes are not well defined. This study examined whether alterations in mitochondrial integrity are involved in TNF-alpha-induced apoptosis in adult ventricular myocytes (ARVM) and determined the roles of caspase-8 (an upstream mediator of TNF-alpha receptor-associated signaling) in this process. After incubation for 24-48 h in serum-free culture medium, ARVM underwent spontaneous apoptosis, which remained stable and was not affected by Z-IETD-FMK, a selective caspase-8 inhibitor. Meanwhile, exposure to TNF-alpha resulted in an increase in apoptosis that was detectable at 6 h and became significant after 12 h, when compared to time-controls. After 24-h exposure, TNF-alpha increased caspase-8 activities, mitochondrial cytochrome C (Cyt C) release to the cytosol, accompanied by loss of mitochondrial transmembrane potential (delta psi(m)). Inhibition of caspase-8 activation in the presence of Z-IETD-FMK abolished the TNF-alpha-induced increases in mitochondrial Cyt C release, loss of delta psi(m) and apoptosis. Therefore, these results suggest that TNF-alpha-induced increase in apoptosis in ARVM results from caspase-8-dependent impairment of mitochondrial integrity.  相似文献   

16.
A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation–contraction (E–C) coupling through dynamic Ca2+ mobilization in cardiomyocytes.  相似文献   

17.
Understanding aging: revealing order out of chaos   总被引:8,自引:0,他引:8  
Aging is often described as an extremely complex process affecting all of the vital parameters of an individual. In this article, we review how understanding of aging evolved from the first analyses of population survival to the identification of the molecular mechanisms regulating life span. Abundant evidence implicates mitochondria in aging and we focus on the three main components of the mitochondrial theory of aging: (1) increased reactive oxygen species (ROS) production, (2) mitochondrial DNA (mtDNA) damage accumulation, and (3) progressive respiratory chain dysfunction. Experimental evidence shows a relationship between respiratory chain dysfunction, ROS damage, and aging in most of the model organisms. However, involvement of the mtDNA mutations in the aging process is still debated. We recently created a mutant mouse strain with increased levels of somatic mtDNA mutations causing a progressive respiratory chain deficiency and premature aging. These mice demonstrate the fundamental importance of the accumulation of mtDNA alterations in aging. We present here an integrative model where aging is provoked by a single primary event leading to a variety of effects and secondary causes.  相似文献   

18.
The effects of acidosis on the action potential, resting potential, L-type Ca(2+) (I(Ca)), inward rectifier potassium (I(K1)), delayed rectifier potassium (I(K)), steady-state (I(SS)), and inwardly rectifying chloride (I(Cl,ir)) currents of rat subepicardial (Epi) and subendocardial (Endo) ventricular myocytes were investigated using the patch-clamp technique. Action potential duration was shorter in Epi than in Endo cells. Acidosis (extracellular pH decreased from 7.4 to 6.5) depolarized the resting membrane potential and prolonged the time for 50% repolarization of the action potential in Epi and Endo cells, although the prolongation was larger in Endo cells. At control pH, I(Ca), I(K1), and I(SS) were not significantly different in Epi and Endo cells, but I(K) was larger in Epi cells. Acidosis did not alter I(Ca), I(K1), or I(K) but decreased I(SS); this decrease was larger in Endo cells. It is suggested that the acidosis-induced decrease in I(SS) underlies the prolongation of the action potential. I(Cl,ir) at control pH was Cd(2+) sensitive but 4,4'-disothiocyanato-stilbene-2,2'-disulfonic acid resistant. Acidosis increased I(Cl,ir); it is suggested that the acidosis-induced increase in I(Cl,ir) underlies the depolarization of the resting membrane potential.  相似文献   

19.
The response of the steady-state level of mitochondrial NAD(P)H of individual cardiac myocytes to substrate and to pharmacological alteration of intracellular calcium was investigated using a defined pacing protocol. Rapid pacing (5 Hz) reversibly decreased the NAD(P)H level and increased oxygen consumption whereas phosphocreatine and ATP levels did not change significantly. Verapamil plus NiCl2 blockade of calcium channels abolished contractions. Ryanodine, which prevents calcium-induced calcium release, also stopped cell contraction. NAD(P)H levels do not change in the absence of contraction. Blockade of sarcolemmal K+ channels did not stop contraction, and NAD(P)H levels reversibly decreased during rapid pacing. Thus rapid contractions are associated with a reversible decrease in NAD(P)H levels. Ruthenium red blockade of Ca2+ entry into mitochondria did not block contraction but significantly decreased NAD(P)H levels in both slowly paced (0.5 Hz) and rapidly paced cells. The simplest explanation of these data is that the steady-state reduction of NAD(P)H is strongly dependent on the rate of ATP utilization and not on sarcoplasmic Ca2+ levels when the oxygen and substrate supplies are not limiting and the intracellular calcium regulation is maintained. An effect of intracellular Ca2+ on NAD(P)H is observed only when Ca2+ entry into mitochondria is blocked with ruthenium red.  相似文献   

20.
The zebrafish is an important model for the study of vertebrate cardiac development with a rich array of genetic mutations and biological reagents for functional interrogation. The similarity of the zebrafish (Danio rerio) cardiac action potential with that of humans further enhances the relevance of this model. In spite of this, little is known about excitation-contraction coupling in the zebrafish heart. To address this issue, adult zebrafish cardiomyocytes were isolated by enzymatic perfusion of the cannulated ventricle and were subjected to amphotericin-perforated patch-clamp technique, confocal calcium imaging, and/or measurements of cell shortening. Simultaneous recordings of the voltage dependence of the L-type calcium current (I(Ca,L)) amplitude and cell shortening showed a typical bell-shaped current-voltage (I-V) relationship for I(Ca,L) with a maximum at +10 mV, whereas calcium transients and cell shortening showed a monophasic increase with membrane depolarization that reached a plateau at membrane potentials above +20 mV. Values of I(Ca,L) were 53, 100, and 17% of maximum at -20, +10, and +40 mV, while the corresponding calcium transient amplitudes were 64, 92, and 98% and cell shortening values were 62, 95, and 96% of maximum, respectively, suggesting that I(Ca,L) is the major contributor to the activation of contraction at voltages below +10 mV, whereas the contribution of reverse-mode Na/Ca exchange becomes increasingly more important at membrane potentials above +10 mV. Comparison of the recovery of I(Ca,L) from acute and steady-state inactivation showed that reduction of I(Ca,L) upon elevation of the stimulation frequency is primarily due to calcium-dependent I(Ca,L) inactivation. In conclusion, we demonstrate that a large yield of healthy atrial and ventricular myocytes can be obtained by enzymatic perfusion of the cannulated zebrafish heart. Moreover, zebrafish ventricular myocytes differed from that of large mammals by having larger I(Ca,L) density and a monophasically increasing contraction-voltage relationship, suggesting that caution should be taken upon extrapolation of the functional impact of mutations on calcium handling and contraction in zebrafish cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号