首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial cells derived from human pulmonary arteries incorporate (3H)-glucosamine and 35SO4 into glycosaminoglycans and into the carbohydrate side chains of glycoproteins. These 3H/35S-carbohydrate chains were isolated from cells and culture medium after Pronase digestion. The 3H/35S-glycosaminoglycans were separated from the 3H/35S glycopeptides by chromatography on Sephadex G-50. The distribution of cellular glycosaminoglycans and glycopeptides indicated that 30–60% of the cellular 35S-glycopeptides may be associated with the matrix components that are synthesized by the cell and attached to a plastic substratum. Human pulmonary arterial endothelial cells were grown on collagen or on a matrix derived from vascular smooth muscle cells in order to investigate how smooth muscle cell extracellular matrix components may regulate the synthesis of endothelial cell glycoconjugates. Endothelial cells grown on plastic release various proportions of the glycoconjugates they synthesize into the culture medium. However, these same cells, when grown on substratum composed of extracellular matrix materials, synthesized altered proportions of cell-associated glycosaminoglycans and reduced the levels of total glycosaminoglycans they released into the culture medium. Thus the growth of endothelial cells on a matrix of smooth muscle cell components indicates that the glycosaminoglycan materials released into the culture medium by cells grown on a plastic substratum may not be an accurate reflection of the levels or composition of extracellular matrix materials made by endothelial cells in vivo.  相似文献   

2.
We studied mannose-containing glycopeptides and glycoproteins of subconfluent and confluent intestinal epithelial cells in culture. Cells were labelled with d-[2-3H]mannose for 24h and treated with Pronase or trypsin to release cell-surface components. The cell-surface and cell-residue fractions were then exhaustively digested with Pronase and the resulting glycopeptides were fractionated on Bio-Gel P-6, before and after treatment with endo-β-N-acetylglucosaminidase H to distinguish between high-mannose and complex oligosaccharides. The cell-surface glycopeptides were enriched in complex oligosaccharides as compared with residue glycopeptides, which contained predominantly high-mannose oligosaccharides. Cell-surface glycopeptides of confluent cells contained a much higher proportion of complex oligosaccharides than did glycopeptides from subconfluent cells. The ability of the cells to bind [3H]concanavalin A decreased linearly with increasing cell density up to 5 days in culture and then remained constant. When growth of the cells was completely inhibited by either retinoic acid or cortisol, no significant difference was observed in the ratio of complex to high-mannose oligosaccharides in the cell-surface glycopeptides of subconfluent cells. Only minor differences were found in total mannose-labelled glycoproteins between subconfluent and confluent cells by two-dimensional gel analysis. The adhesion of the cells to the substratum was measured at different stages of growth and cell density. Subconfluent cells displayed a relatively weak adhesion, which markedly increased with increased cell density up to 6 days in culture. It is suggested that alterations in the structure of the carbohydrates of the cell-surface glycoproteins are dependent on cell density rather than on cell growth. These changes in the glycopeptides are correlated with the changes in adhesion of the cells to the substratum.  相似文献   

3.
The human colon cancer cell line HT-29 remains totally undifferentiated when glucose is present in the culture medium (HT-29 Glc+), while the same cells may undergo typical enterocytic differentiation after reaching confluence when grown in glucose-deprived medium (HT-29 Glc-). Recently, we demonstrated a deficiency in the overall N-glycan processing in confluent undifferentiated cells, whereas differentiated cells follow a classical pattern of N-glycosylation. The main changes in N-glycosylation observed in confluent undifferentiated cells may be summarised as follows: 1) the conversion of high mannose into complex glycopeptides is greatly decreased; 2) this decreased conversion could be a consequence of an accumulation of Man9-8-GlcNAc2-Asn high mannose species. Whether these changes in N-glycan processing appear progressively during cell culture or are already present from the beginning of the culture was investigated in this study by comparing the actual status of N-glycan processing in exponentially growing HT-29 Glc- and HT-29 Glc+ cells. Under these conditions, HT-29 Glc- cells do not exhibit any characteristics of differentiation. The conversion of high mannose into complex glycoproteins is severely reduced in HT-29 Glc+ cells, regardless of the growth phase studied. In contrast, HT-29 Glc- cells display a normal pattern of N-glycan processing in both growth phases. We therefore conclude that N-glycan processing may be used as an early biochemical marker of the enterocytic differentiation process of HT-29 cells.  相似文献   

4.
Confluent cultured intestinal epithelial cells displayed greater adhesion to the substratum than did subconfluent cells. Subconfluent and confluent cells were labelled with [3H]fucose for 24h and the cell-surface components were released by mild Pronase treatment. After extensive Pronase digestion, cell-surface and cell-residue glycopeptides were fractionated on Bio-Gel P-6. The cell surface contained a higher proportion of lower-molecular-weight glycopeptides than the residue. No significant difference in elution pattern was found between total cell-surface glycopeptides of subconfluent and confluent cells. However, confluent cells contained almost twice as much [3H]-fucose-labelled glycopeptides that were bound to concanavalin A-Sepharose and were subsequently eluted with 20mM-methyl alpha-D-glucopyranoside as subconfluent cells. When the bound glycopeptides were chromatographed on Bio-Gel P-6, it was found that confluent cells contained a larger proportion of lower-molecular-weight glycopeptides than subconfluent cells. This difference in size was eliminated after treatment of glycopeptides with sialidase. When growth of subconfluent cells was inhibited with a non-toxic concentration of retinoic acid, no significant effect on the elution pattern of [3H]fucose-labelled glycopeptides was observed on either Bio-Gel P-6 or concanavalin A-Sepharose. No significant difference was found in the total [3H]fucose-labelled glycoproteins from subconfluent and confluent cells by two-dimensional gel electrophoresis. It is suggested that the differences in [3H]fucose-labelled glycopeptides between subconfluent and confluent cells are cell-density-dependent rather than growth-dependent, and that these differences are likely to result from some changes in glycosylation mechanism(s). Furthermore, the differences in cell-surface glycopeptides may be related to the changes in the adhesion of the cells to the substratum.  相似文献   

5.
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in beta-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha-actinin are organized into longitudinally arranged "myofibrils" and the vimentin-containing intermediate filaments form a meshed cytoskeletal network. However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins.  相似文献   

6.
Summary The mitral valve has atrial and ventricular sides, each lined by endocardial cells. The valve stroma contains α smooth muscle actin positive interstitial cells, collagen, glycosaminoglycans, and elastic tissue. To eliminate the effect of endocardium on wound repair in bovine mitral valve organ culture, the endocardium was removed from both sides of the valve. At 6 days, organ cultures of these preparations revealed surface cells on the ventricular side but not on the atrial side. Ventricular surface cells were negative for Factor VIII-related antigen, and positive for α smooth muscle actin. Immuno-peroxidase staining for proliferating cell nuclear antigen/cyclin, a marker for cell proliferation, revealed a positive labeling index of (mean ± standard deviation) 0.08 ± 0.16% for interstitial cells from the atrial side and 0.14 ± 0.19% for ventricular side interstitial cells in uncultured preparations (not significant), and 0.44 ± 0.69% for atrial side interstitial cells and 2.25 ± 1.64% for ventricular side interstitial cells in the cultured preparations (significant,P<0.0006). The results suggest that in organ culture, interstitial cells from the ventricular side of the mitral valve respond to a denuding endocardial injury by proliferating and migrating onto the adjacent surface whereas interstitial cells from the atrial side do not. This difference in the response to injury of interstitial cells from the atrial and ventricular sides of the valve may reflect differences in phenotype or may be due to effects of extracellular matrix on interstitial cell behavior. The latter is possible because of differences in the extracellular matrix of the atrial and ventricular sides of the valve.  相似文献   

7.
Control of smooth muscle cell proliferation in vascular disease   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Smooth muscle cell proliferation has previously been regarded as a central feature in vascular disease. The role of this process has recently been substantially re-evaluated, and we have reconsidered the functional importance of smooth muscle cell proliferation, the origin of proliferating smooth muscle cells in lesions, and the mechanisms whereby smooth muscle cell proliferation is controlled. In this review, we summarize recent progress in the understanding of smooth muscle cell proliferation, with a particular focus on how interactions between the extracellular matrix, smooth muscle cells, and mitogens control critical steps in this process. RECENT FINDINGS: Irrespective of the origin of smooth muscle cells in vascular lesions, fundamental interactions between the extracellular matrix and cell surface integrins are necessary in order to initiate a proliferative response in a quiescent smooth muscle cell, in a similar manner to any non-malignant cell. These interactions trigger intracellular signaling and cell cycle entry, which facilitate cell cycle progression and proliferation by mitogens. In addition, extracellular matrix interactions may also control the availability and activity of growth factors such as heparin-binding mitogens, which can be sequestered by heparan sulfate containing extracellular matrix components and regulate smooth muscle cell proliferation. SUMMARY: New insights into mechanisms whereby the extracellular matrix takes part in the control of smooth muscle cell proliferation suggest a number of putative targets for future therapies that can be applied to increase plaque stability, prevent the clinical consequences of atherosclerosis and improve outcomes after interventional procedures and organ transplantation.  相似文献   

8.
The spreading of freshly isolated arterial smooth muscle cells on a substrate of fibronectin is mediated by an integrin receptor on the cell surface. It is associated with organization of actin filaments in stress fibers and marked changes in cell morphology and function, collectively referred to as a transition from a contractile to a synthetic phenotype. To study further how extracellular matrix components affect smooth muscle phenotype, we have analyzed the expression and organization of smooth-muscle-specific alpha-actin in freshly isolated rat aortic smooth muscle cells cultured on a substrate of fibronectin under serum-free conditions. Northern-blot analysis showed that the expression of mRNA for smooth muscle alpha-actin, but not for nonmuscle actin, was strongly repressed during primary culture. On the other hand, the cellular content of alpha-actin was only moderately changed during the same period. Indirect immunofluorescence staining revealed that nonmuscle actin was rapidly organized in stress fibers, which did not stain with a monoclonal antibody against smooth muscle alpha-actin. Filament bundles containing alpha-actin were most prominent in the central parts of the cytoplasm and gradually disappeared as the spreading of the cells progressed. In contrast to the situation with nonmuscle actin, there was no apparent overlap in the staining for alpha-actin and the fibronectin receptor (alpha 5 beta 1), indicating that this receptor interacted with nonmuscle actin during the initial spreading process. Taken together, the results show that the expression and organization of smooth muscle alpha-actin are changed during interaction of the cells with fibronectin early in primary culture. They support the notion that integrin-mediated interactions between extracellular matrix components and arterial smooth muscle cells take part in the control of smooth muscle phenotype.  相似文献   

9.
Smooth muscle cell proliferation after arterial injury is regulated by growth factors and components of the extracellular matrix. We have previously demonstrated that fibronectin promotes a phenotypic modulation of freshly isolated rat smooth muscle cells from a contractile to a synthetic phenotype in primary culture and supports the ability of the cells to respond to growth factors. Here, we analyzed if fibronectin promotes cell cycle entry in freshly isolated rat aortic smooth muscle cells during primary culture. Cell cycle analysis showed that cells seeded on fibronectin remained in the G(0)/G(1) phase of the cell cycle during the first 6 days of culture. During this period, there was an increased expression of cyclin D1 and p27(KIP1) in the absence of exogenous growth factors. Addition of serum was followed by enhanced cyclin D1 expression, decreased p27(KIP1) levels, hyperphosphorylation of Rb protein, induction of cyclin A and cyclin D3 expression, and cell cycle progression into S phase. The results indicate that fibronectin initiates cell cycle entry in freshly isolated smooth muscle cells by promoting the induction of cyclin D1 and thereby facilitates further cell cycle progression together with growth factors.  相似文献   

10.
Summary Segments of human thoracic aorta were maintained in long-term explant culture for 18 weeks in serum-supplemented medium. The aortas were grossly normal in appearance, and random samples fixed for light microscopy prior to culture revealed a normal morphology. The intima contained no more than five layers of smooth muscle cells. After 7 days in culture, the intima was noticeably thicker than the uncultured segments. The increased thickness was due to proliferating smooth muscle cells and production of extracellular material. After several months in culture, extracellular material consisting of collagen and flocculent material was present in areas resembling atherosclerotic fibrous plaques. A peripheral growth, which formed around the explant, was composed of fibroblastlike cells and added to the overall thickness of the intima. However, aortic segment maintained for up to 2 months in serum-free culture medium showed no cellular proliferation. This study demonstrates that changes resembling early stages of atherosclerosis occur in human aortas maintained in explant culture using routine culture procedures. Supported in part by the Pangborn Fund and the Graduate School of the University of Maryland. This is publication 443 from the Cellular Pathobiology Laboratory.  相似文献   

11.
L A Barrett  W J Mergner  B F Trump 《In vitro》1979,15(12):957-966
Segments of human thoracic aorta were maintained in long-term explant culture for 18 weeks in serum-supplemented medium. The aortas were grossly normal in appearance, and random samples fixed for light microscopy prior to culture revealed a normal morphology. The intima contained no more than five layers of smooth muscle cells. After 7 days in culture, the intima was noticeably thicker than the uncultured segments. The increased thickness was due to proliferating smooth muscle cells and production of extracellular material. After several months in culture, extracellular material consisting of collagen and flocculent material was present in areas resembling atherosclerotic fibrous plaques. A peripheral growth, which formed around the explant, was composed of fibroblastlike cells and added to the overall thickness of the intima. However, aortic segment maintained for up to 2 months in serum-free culture medium showed no cellular proliferation. This study demonstrates that changes resembling early stages of atherosclerosis occur in human aortas maintained in explant culture using routine culture procedures.  相似文献   

12.
Elastin production by cultured calf pulmonary artery endothelial cells   总被引:7,自引:0,他引:7  
Calf pulmonary artery (CPA) endothelial cells synthesize and secrete soluble elastin when incubated in medium conditioned by arterial smooth muscle cells. Endothelial cell tropoelastin cross-reacts with antiserum to bovine ligamentum nuchae elastin and comigrates on SDS-PAGE with tropoelastins from fetal bovine ligamentum nuchae fibroblasts, aortic smooth muscle cells, and ear chondroblasts at an apparent molecular weight of 70,000. Endothelial cells synthesize only one-third as much elastin as these other cell types, however. Approximately 80% of the elastin synthesized by endothelial cells in confluent culture is released into the culture medium. The remaining 20% remains associated with the cell layer and is readily extractable with dilute acetic acid as un-cross-linked, 70,000-dalton tropoelastin. The addition of beta-aminopropionitrile to culture medium did not alter the ratio of tropoelastin in the medium and cell layer, suggesting that cross-linking of tropoelastin does not occur in culture. Immunofluorescent staining of confluent endothelial cell cultures with antielastin serum demonstrated elastin occurring as a web-like network of fine filaments extending throughout the extracellular space. The fibrous elastin was different in organization and distribution from fibers stained with antifibronectin serum, which were localized primarily beneath the cell layer and in regions of cell-cell contact. Extracellular matrix remaining after solubilization of cellular material with Triton X-100 stained positive for fibronectin, but not for elastin.  相似文献   

13.
A routine, reproducible procedure was developed for the preparation and characterization of stromal cells from normal human breast tissue obtained by reduction mammaplasty. Isolates (n = 15) all exhibited enhanced rates of proliferation, even in the presence of 20% fetal calf serum, when exposed to epidermal growth factor or transforming growth factor a (both 10(-8) M). Cellular responsiveness to these growth factors was consistent with expression of specific surface receptors for epidermal growth factor (approximately 10(4)/cell). In cultures, stromal cells elaborated an extensive, cross-linked, insoluble extracellular matrix which remained firmly associated with the plastic surface of tissue culture ware upon lysis of cells. The insoluble matrix material was analyzed using enzymatic digestion procedures following incorporation of radiolabelled precursors into macromolecular material prior to lysis and preparation. The relative proportion of glycoconjugate (glycopeptides and proteoglycans) and collagenous material present in matrix material was approximately 45% and approximately 55%, respectively, and this was modulated by inclusion of epidermal growth factor into culture medium to approximately 60% and approximately 40%, respectively. Under similar culture conditions stromal cells synthesized twice as much hyaluronate as was produced by control cultures. By use of specific antibody preparations we identified at least four species of glycopeptide present in stromal matrices (namely, fibronectin, laminin, tenascin, and thrombospondin) as well as three types of collagen (types I, III, and IV). The rapid and reproducible procedure for the preparation of radiolabelled insoluble matrix material from normal human breast tissue allows for the study of cellular interaction involving extracellular matrix turnover and degradation.  相似文献   

14.
Cultured arterial smooth muscle cells synthesize and secrete two types of sulfated proteoglycans designated as proteoglycan A and proteoglycan B. Proteoglycan A has been characterized as chondroitin sulfate-rich, whereas proteoglycan B was found to be dermatan sulfate-rich [Schmidt, A. & Buddecke, E. (1985) Eur. J. Biochem. 153, 260-273]. During the logarithmic growth phase, arterial smooth muscle cells incorporated about 3 times more [35S]sulfate into the total proteoglycans secreted into the culture medium than did non-dividing cells. When arterial smooth muscle cells stopped proliferating the ratio of [35S]proteoglycan A/B increased. No differences were detected in the respective molecular and chemical characteristics of purified proteoglycans A and B isolated from both proliferating and non-dividing cells. Regardless of the growth phase proteoglycan A had a molecular mass of about 280 kDa and contained 8-9 chondroitin sulfate-rich side chains. Proteoglycan B had a molecular mass of about 180 kDa and contained 6-7 dermatan sulfate-rich side chains. The [35S]methionine-labelled protein cores of proteoglycan A and B had a molecular mass of about 48 kDa, but were distinguishable by their specific reactions to monospecific antibodies. Proliferating cells endocytosed proteoglycan B at a rate up to 100% higher than that of non-dividing cells. In all growth phases proteoglycan A was endocytosed at a 10-fold lower rate than proteoglycan B.  相似文献   

15.
In the accompanying paper (Gabel, Den, and Ambron, in press) it was shown that eight populations of glycopeptides are synthesized by single neurons of Aplysia californica. To see which glycopeptides might mediate interactions with target cells, we first identified glycopeptides that are transported selectively to synapses and growth cones. The giant neuron R2 was injected intrasomatically with 3H-glucosamine. Twenty-four hours later, 3H-glycopeptides in the axon and cell body were isolated and resolved by serial lectin affinity chromatography. Of the eight populations, the biantennary-type glycopeptides (GPbi) and those that bind to WGA (GPwga) were preferentially associated with rapidly transported glycoproteins. In contrast, the glycopeptide that consists of N-acetylglucosamine O-linked to ser/thr was mostly retained in the cell body. GPbi and GPwga were also preferentially transported to growth cones. Analyses of RUQ cells, exposed to 3H-glucosamine in vitro for 36 h showed an enrichment of GPbi and GPwga at the growth cone relative to the cell body. The disposition of the various glycopeptides in growing neurons was also examined using FITC lectins. FITC-coupled WGA, Vicia vellosa, and lentil lectin showed extensive staining of the cell body, but only WGA stained the growth cones. To investigate if GPwga interacts specifically with target cells, these glycopeptides were isolated from the neurons of 180 abdominal ganglia. GPwga, other Aplysia glycopeptides, and glycopeptides prepared from ovalbumin were coupled separately to fluorescent spheres. The spheres were then added to muscle cells isolated from the auricle of the heart, which is innervated by many neurons from the ganglion. While spheres coupled to GPwga bound to the muscle cell surface, the other glycopeptides did not. These results indicate that glycopeptides class GPwga, found among rapidly transported glycoproteins and on the growth cone surface, is able to bind to muscle cells and may therefore play some role in neuron-target interactions.  相似文献   

16.
Retention of LDL in the artery intima is mediated by extracellular matrix proteoglycans and plays an important role in the initiation of atherosclerosis. Compared with quiescent cells, proliferating smooth muscle cells secrete proteoglycans with elongated glycosaminoglycan side chains, which have an increased binding affinity to LDL. Because 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins) decrease smooth muscle cell proliferation, we hypothesized that statin exposure would decrease both the size and LDL binding affinity of vascular proteoglycans. Monkey aortic smooth muscle cells grown in culture were exposed to simvastatin (10 and 100 microM) and cerivastatin (0.1 and 1 microM), and newly secreted proteoglycans were quantified and characterized. Both simvastatin and cerivastatin caused a concentration-dependent reduction in cell growth and reduced 35SO4 incorporation into secreted proteoglycans, on both an absolute and a per cell basis. Interestingly, statin exposure increased the apparent molecular weight and hydrodynamic size of secreted proteoglycans. However, proteoglycans secreted from statin-exposed cells demonstrated a reduction in binding affinity to LDL. Thus, statins may induce atheroprotective changes in vascular proteoglycans and lower LDL retention in the vessel wall. These findings suggest a mechanism whereby statins may benefit atherosclerosis in a manner unrelated to serum LDL lowering.  相似文献   

17.
18.
Cell proliferation of vascular cells is a key feature in vascular biology, wound healing, and pathophysiological processes such as atherosclerosis and restenosis. In atherosclerotic intima, cell proliferation colocalizes with oxidized LDL that indicate a local oxidative stress. This study aims to investigate whether cell proliferation is causally related with extracellular ROS generation and subsequent LDL oxidation. Sparse proliferating endothelial and smooth muscle cells generate higher levels of extracellular ROS (O2 and H2O2) and LDL oxidation than confluent contact-inhibited cells. During wound healing of confluent cell layer, cell proliferation associated with healing also induced enhanced extracellular ROS generation and LDL oxidation. Proliferation-associated extracellular ROS generation is mediated through mitogenic signaling pathways, involving ERK1/2 and PKC, but is independent of de novo DNA synthesis, gene expression and protein synthesis. Data obtained with inhibitors of oxidases suggest that proliferation-associated extracellular ROS are not generated by a single ROS-generating system and are not essential for cell proliferation. In conclusion, our data show that proliferating vascular cells (in sparse culture or during wound healing) generate high levels of extracellular ROS and LDL oxidation through regulation of ROS-generating systems by mitogenic signaling. This constitutes a link between proliferative events and oxidative stress/LDL oxidation in atherosclerotic lesions and restenosis.  相似文献   

19.
Summary For the first time we report on the growth, culture, and matrix production characteristics of a cell type isolated from the lamina propria of the urinary bladder wall. A fibroblastlike cell was identified as distinct from bladder detrusor smooth muscle cells and urothelium based on morphology, growth characteristics, and immunohistochemical staining. Characterization of extracellular matrix synthesis by this cell type using35S-methionine metabolic labeling demonstrated that these cells are capable of secreting components of the surrounding connective tissue, including several fibrillar collagens, a basement membrane collagen, and fibronectin.  相似文献   

20.
Laminin and fibronectin are glycoproteins that influence cell behavior and mediate cell/substratum adhesion. We have examined the interaction of these macromolecules with the serine protease plasminogen activator (PA) in two types of extracellular matrices; one produced by the murine Engelbreth-Holm-Swarm (EHS) tumor (Matrigel), and another by normal kidney epithelial cells in culture. Matrigel was found to contain significant quantities of tissue-type PA (tPA). Two of the major components of Matrigel, laminin and type IV collagen, were also examined. Tissue-type PA was associated with purified preparations of laminin; however, it was not found associated with type IV collagen. Normal kidney epithelial cells in culture secrete large amounts of urokinase (UK) and deposit a subepithelial matrix containing both laminin and fibronectin. These matrix macromolecules were isolated from the deposited matrix by immunoprecipitation, examined by zymography, and found to contain UK. The potential role of this interaction in the mechanisms of cell migration and matrix remodeling is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号