首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
BACKGROUND:Chediak-Higashi syndrome (CHS) is an inherited immunodeficiency disease characterized by giant lysosomes and impaired leukocyte degranulation. CHS results from mutations in the lysosomal trafficking regulator (LYST) gene, which encodes a 425-kD cytoplasmic protein of unknown function. The goal of this study was to identify proteins that interact with LYST as a first step in understanding how LYST modulates lysosomal exocytosis. MATERIALS AND METHODS: Fourteen cDNA fragments, covering the entire coding domain of LYST, were used as baits to screen five human cDNA libraries by a yeast two-hybrid method, modified to allow screening in the activation and the binding domain, three selectable markers, and more stringent confirmation procedures. Five of the interactions were confirmed by an in vitro binding assay. RESULTS: Twenty-one proteins that interact with LYST were identified in yeast two-hybrid screens. Four interactions, confirmed directly, were with proteins important in vesicular transport and signal transduction (the SNARE-complex protein HRS, 14-3-3, and casein kinase II). CONCLUSIONS:On the basis of protein interactions, LYST appears to function as an adapter protein that may juxtapose proteins that mediate intracellular membrane fusion reactions. The pathologic manifestations observed in CHS patients and in mice with the homologous mutation beige suggest that understanding the role of LYST may be relevant to the treatment of not only CHS but also of diseases such as asthma, urticaria, and lupus, as well as to the molecular dissection of the CHS-associated cancer predisposition.  相似文献   

2.
Chediak-Higashi Syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects including recurrent bacterial infections, impaired chemotaxis and abnormal natural killer (NK) cell function. Patients with this syndrome exhibit other symptoms such as an associated lymphoproliferative syndrome, bleeding tendencies, partial albinism and peripheral neuropathies. The classic diagnostic feature of CHS is the presence of huge lysosomes and cytoplasmic granules within cells. Similar defects are found in other mammals, the most well studied being the beige mouse and Aleutian mink. A positional cloning approach resulted in the identification of the Beige gene on chromosome 13 in mice and the CHS1/LYST gene on chromosome 1 in humans. The protein encoded by this gene is 3801 amino acids and is highly conserved throughout evolution. The identification of CHS1/Beige has defined a family of genes containing a common BEACH motif. The function of these proteins in vesicular trafficking remains unknown.  相似文献   

3.
The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.  相似文献   

4.
The CHS5 locus of Saccharomyces cerevisiae is important for wild-type levels of chitin synthase III activity. chs5 cells have reduced levels of this activity. To further understand the role of CHS5 in yeast, the CHS5 gene was cloned by complementation of the Calcofluor resistance phenotype of a chs5 mutant. Transformation of the mutant with a plasmid carrying CHS5 restored Calcofluor sensitivity, wild-type cell wall chitin levels, and chitin synthase III activity levels. DNA sequence analysis reveals that CHS5 encodes a unique polypeptide of 671 amino acids with a molecular mass of 73,642 Da. The predicted sequence shows a heptapeptide repeated 10 times, a carboxy-terminal lysine-rich tail, and some similarity to neurofilament proteins. The effects of deletion of CHS5 indicate that it is not essential for yeast cell growth; however, it is important for mating. Deletion of CHS3, the presumptive structural gene for chitin synthase III activity, results in a modest decrease in mating efficiency, whereas chs5delta cells exhibit a much stronger mating defect. However, chs5 cells produce more chitin than chs3 mutants, indicating that CHS5 plays a role in other processes besides chitin synthesis. Analysis of mating mixtures of chs5 cells reveals that cells agglutinate and make contact but fail to undergo cell fusion. The chs5 mating defect can be partially rescued by FUS1 and/or FUS2, two genes which have been implicated previously in cell fusion, but not by FUS3. In addition, mating efficiency is much lower in fus1 fus2 x chs5 than in fus1 fus2 x wild type crosses. Our results indicate that Chs5p plays an important role in the cell fusion step of mating.  相似文献   

5.
In previous work we reported that long term treatment of polarized HT-29 cells by 1-benzyl-2-acetamido-2-deoxy-alpha-d-galactopyranoside (GalNAcalpha-O-bn) induced undersialylation and intracellular distribution of apical glycoproteins such as dipeptidyl peptidase IV (DPP-IV), and we suggested therefore that sialylation could act as an apical targeting signal. In this work, the apical direct biosynthetic route was studied after transfection of polarized enterocyte-like HT-29 5M12 cloned cells with a murine cDNA coding for a soluble form of DPP-IV, which was secreted into the apical medium. A 24-h treatment of transfected cells by GalNAcalpha-O-bn markedly inhibited the apical secretion and the sialylation of this soluble murine DPP-IV, which became blocked inside the cell. A similar short GalNAcalpha-O-bn treatment also induced an intracellular distribution of both endogenous transmembrane DPP-IV and proteins involved in the regulation of the apical trafficking such as the apical t-SNARE syntaxin-3 and the raft-associated protein annexin XIIIb, whereas the basolateral t-SNARE syntaxin-4 kept its normal localization. These apical membrane proteins moved efficiently from trans-Golgi network to apical carrier vesicles but failed to be transported from carrier vesicles to the apical plasma membrane. Isolation of membrane microdomains showed that GalNAcalpha-O-bn induced the formation of abnormal lipid-rich microdomains in comparison to normal rafts, as shown by their lower buoyant density and their depletion in annexin XIIIb. In conclusion, GalNAcalpha-O-bn blocks the anterograde traffic to the apical surface of polarized HT-29 cells at the transport level or docking/fusion level of carrier vesicles.  相似文献   

6.
Jacob R  Naim HY 《Current biology : CB》2001,11(18):1444-1450
The function of polarized epithelial cells and neurons is achieved through intracellular sorting mechanisms that recognize classes of proteins in the trans-Golgi network (TGN) and deliver them into separate vesicles for transport to the correct surface domain. Some proteins are delivered to the apical membrane after their association with membrane detergent-insoluble glycophosphatidylinositol/cholesterol (DIG) membrane microdomains [1], while some do not associate with DIGs [2-4]. However, it is not clear if this represents transport by two different pathways or if it can be explained by differences in the affinity of individual proteins for DIGs. Here, we investigate the different trafficking mechanisms of two apically sorted proteins, the DIG-associated sucrase-isomaltase (SI) and lactase-phlorizin hydrolase, which uses a DIG-independent pathway [5]. These proteins were tagged with YFP or CFP, and their trafficking in live cells was visualized using confocal laser microscopy. We demonstrate that each protein is localized to distinct subdomains in the same transport vesicle. A striking triangular pattern of concentration of the DIG-associated SI in subvesicular domains was observed. The original vesicles partition into smaller carriers containing either sucrase-isomaltase or lactase-phlorizin hydrolase, but not both, demonstrating for the first time a post-TGN segregation step and transport of apical proteins in different vesicular carriers.  相似文献   

7.
A Salmonella virulence protein that inhibits cellular trafficking.   总被引:23,自引:0,他引:23       下载免费PDF全文
Salmonella enterica requires a type III secretion system, designated Spi/Ssa, to survive and proliferate within macrophages. The Spi/Ssa system is encoded within the SPI-2 pathogenicity island and appears to function intracellularly. Here, we establish that the SPI-2-encoded SpiC protein is exported by the Spi/Ssa type III secretion system into the host cell cytosol where it interferes with intracellular trafficking. In J774 macrophages, wild-type Salmonella inhibited fusion of Salmonella-containing phagosomes with lysosomes and endosomes, and interfered with trafficking of vesicles devoid of the microorganism. These inhibitory activities required living Salmonella and a functional spiC gene. Purified SpiC protein inhibited endosome-endosome fusion in vitro. A Sindbis virus expressing the SpiC protein interfered with normal trafficking of the transferrin receptor in vivo. A spiC mutant was attenuated for virulence, suggesting that the ability to interfere with intracellular trafficking is essential for Salmonella pathogenesis.  相似文献   

8.
Cellular localization and trafficking of the human ABCA1 transporter   总被引:16,自引:0,他引:16  
ABCA1, the ATP-binding cassette protein mutated in Tangier disease, mediates the efflux of excess cellular sterol to apoA-I and thereby the formation of high density lipoprotein. The intracellular localization and trafficking of ABCA1 was examined in stably and transiently transfected HeLa cells expressing a functional human ABCA1-green fluorescent protein (GFP) fusion protein. The fluorescent chimeric ABCA1 transporter was found to reside on the cell surface and on intracellular vesicles that include a novel subset of early endosomes, as well as late endosomes and lysosomes. Studies of the localization and trafficking of ABCA1-GFP in the presence of brefeldin A or monensin, agents known to block intracellular vesicular trafficking, as well as apoA-I-mediated cellular lipid efflux, showed that: (i) ABCA1 functions in lipid efflux at the cell surface, and (ii) delivery of ABCA1 to lysosomes for degradation may serve as a mechanism to modulate its surface expression. Time-lapse fluorescence microscopy revealed that ABCA1-GFP-containing early endosomes undergo fusion, fission, and tubulation and transiently interact with one another, late endocytic vesicles, and the cell surface. These studies establish a complex intracellular trafficking pathway for human ABCA1 that may play important roles in modulating ABCA1 transporter activity and cellular cholesterol homeostasis.  相似文献   

9.
The fusion of transport vesicles with their cognate target membranes, an essential event in intracellular membrane trafficking, is regulated by SNARE proteins and Rab GTPases. Rab GTPases are thought to act prior to SNAREs in vesicle docking, but the exact biochemical relationship between the two classes of molecules is not known. We recently identified the early endosomal autoantigen EEA1 as an effector of Rab5 in endocytic membrane fusion. Here we demonstrate that EEA1 interacts directly and specifically with syntaxin-6, a SNARE implicated in trans-Golgi network to early endosome trafficking. The binding site for syntaxin-6 overlaps with that of Rab5-GTP at the C terminus of EEA1. Syntaxin-6 and EEA1 were found to colocalize extensively on early endosomes, although syntaxin-6 is present in the trans-Golgi network as well. Our results indicate that SNAREs can interact directly with Rab effectors, and suggest that EEA1 may participate in trans-Golgi network to endosome as well as in endocytic membrane traffic.  相似文献   

10.
Mutations in the neutrophil elastase (NE) gene have been postulated to interfere with normal intracellular trafficking of NE as an AP3-interacting membrane integrated protein and to cause severe congenital or cyclic neutropenia in humans. Here, we show that in U937 promonocytes NE is synthesized as a predominantly soluble proenzyme and is completely secreted in the presence of phorbol esters similarly to serglycin. Using chemical cross-linking NE is shown to be associated with serglycin as 34 kDa proenzyme in the trans-Golgi region of these cells indicating that it is delivered to lysosomes associated with serglycin.  相似文献   

11.
BACKGROUND INFORMATION: We have previously showed that: (i) cholangiocytes contain AQP1 (aquaporin 1) water channels sequestered in intracellular vesicles; and (ii) upon stimulation with choleretic agonists such as secretin or dibutyryl-cAMP (dbcAMP), the AQP1 vesicles move via microtubules to the apical cholangiocyte membrane to facilitate osmotically driven, passive water movement (i.e. ductal bile secretion). The aim of the present study was to determine which proteins and mechanisms regulate AQP1 trafficking in cholangiocytes. RESULTS: Using polarized cultured NMCs (normal mouse cholangiocytes) or NRCs (normal rat cholangiocytes) and affinity-purified antibodies, we performed immunofluorescent confocal microscopy on fixed cells or immunoblotting on cell lysates for actin, tubulin, kinesin and dynein, proteins known to regulate intracellular vesicle trafficking. By immunostaining, the appropriate orientation of the actin (i.e. sub-apical) and tubulin (i.e. generalized) cytoskeleton was apparent; kinesin and dynein displayed a homogeneous punctate distribution. Immunoblotting showed kinesin and dynein to be present in both cholangiocyte lysates and in isolated AQP1-containing vesicles. We utilized real-time fluorescence confocal microscopy of NMCs transfected with a GFP (green fluorescent protein)-AQP1 fusion construct in the presence and absence of dbcAMP. CONCLUSIONS: Our results provide additional insights into the potential molecular mechanisms of ductal bile secretion.  相似文献   

12.
Chediak–Higashi Syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects including recurrent bacterial infections, impaired chemotaxis and abnormal natural killer (NK) cell function. Patients with this syndrome exhibit other symptoms such as an associated lymphoproliferative syndrome, bleeding tendencies, partial albinism and peripheral neuropathies. The classic diagnostic feature of CHS is the presence of huge lysosomes and cytoplasmic granules within cells. Similar defects are found in other mammals, the most well studied being the beige mouse and Aleutian mink. A positional cloning approach resulted in the identification of the Beige gene on chromosome 13 in mice and the CHS1/LYST gene on chromosome 1 in humans. The protein encoded by this gene is 3801 amino acids and is highly conserved throughout evolution. The identification of CHS1/Beige has defined a family of genes containing a common BEACH motif. The function of these proteins in vesicular trafficking remains unknown.  相似文献   

13.
《The Journal of cell biology》1994,126(5):1157-1172
To investigate the mechanisms of membrane protein localization to the Golgi complex, we have examined the intracellular trafficking of epitope-tagged forms of the mammalian endopeptidase, furin, in stably transformed rat basophilic leukemia cells. Our studies show that furin is predominantly localized to the trans-Golgi network (TGN) at steady state, with smaller amounts present in intracellular vesicles. Biochemical and morphological analyses reveal that furin is progressively delivered to a lysosomal compartment, where it is degraded. Analyses of furin deletion mutants and chimeric proteins show that the cytoplasmic domain is both necessary and sufficient for localization to the TGN in various cell types. Interestingly, deletion of most of the cytoplasmic domain of furin results in a molecule that is predominantly localized to intracellular vesicles, some of which display characteristics of lysosomes. To a lesser extent, the cytoplasmically deleted molecule is also localized to the plasma membrane. These observations suggest the existence of an additional determinant for targeting to the endosomal/lysosomal system within the lumenal and/or transmembrane domains of furin. Thus, the overall pattern of trafficking and steady state localization of furin are determined by targeting information contained within more than one region of the molecule.  相似文献   

14.
Reductively [3H]methylated 3H mitochondrial-outer-membrane vesicles from rat liver and vesicles where monoamine oxidase has been derivatized irreversibly by [3H]-pargyline have been deliberately miscompartmentalized by heterologous transplantation into hepatoma (HTC) cells by poly(ethylene glycol)-mediated vesicle-cell fusion. Fluorescein-conjugated mitochondrial-outer-membrane vesicles have also been used to show that transplanted material is patched, capped and internalized. Reductively methylated outer-membrane proteins and monoamine oxidase are destroyed at the same rate (t1/2 24 h). Mitochondrial-outer-membrane proteins are not degraded at the same rate as HTC plasma-membrane proteins, endogenous cell protein, or endocytosed protein. Transplanted radiolabelled mitochondrial-outer-membrane proteins accumulate intracellularly in structures that are distinct from plasma membrane and lysosomes. However, when mitochondrial-outer-membrane vesicles derivatized with [14C]sucrose are transplanted, the acid-soluble degradation products accumulate in the lysosomal fraction. [14C]Sucrose-conjugated HTC cell plasma membrane accumulates in intracellular structures that are again distinct from plasma membrane and lysosomes. In contrast with the above observations, homologously transplanted mitochondrial-outer-membrane proteins from rat liver are destroyed in hepatocytes at rates that are remarkably similar (t1/2 60-70 h) to the rates in rat liver in vivo [Evans & Mayer (1982) Biochem. Biophys. Res. Commun. 107, 51-58].  相似文献   

15.
The adaptor protein complex AP-3 is involved in the sorting of lysosomal membrane proteins to late endosomes/lysosomes. It is unclear whether AP-3-containing vesicles form at the trans-Golgi network (TGN) or early endosomes. We have compared the trafficking routes of endolyn/CD164 and 'typical' lysosomal membrane glycoproteins (lgp120/lamp-1 and CD63/lamp-3) containing cytosolic YXXPhi-targeting motifs preceded by asparagine and glycine, respectively. Endolyn, which has a NYHTL-motif, is concentrated in lysosomes, but also occurs in endosomes and at the cell surface. We observed predominant interaction of the NYHTL-motif with the mu-subunits of AP-3 in the yeast two-hybrid system. Endolyn was mislocalized to the cell surface in AP-3-deficient pearl cells, confirming a major role of AP-3 in endolyn traffic. However, lysosomal delivery of endolyn (or a NYHTL-reporter), but not GYXXPhi-containing proteins, was practically abolished when AP-2-mediated endocytosis or traffic from early to late endosomes was inhibited in NRK and 3T3 cells. This indicates that endolyn is mostly transported along the indirect lysosomal pathway (via the cell surface), rather than directly from the TGN to late endosomes/lysosomes. Our results suggest that AP-3 mediates lysosomal sorting of some membrane proteins in early endosomes in addition to sorting of proteins with intrinsically strong AP-3-interacting lysosomal targeting motifs at the TGN.  相似文献   

16.
Exciting discoveries in the last decade have cast light onto the fundamental mechanisms that underlie polarized trafficking in epithelial cells. It is now clear that epithelial cell membrane asymmetry is achieved by a combination of intracellular sorting operations, vectorial delivery mechanisms and plasmalemma-specific fusion and retention processes. Several well-defined signals that specify polarized segregation, sorting, or retention processes have, now, been described in a number of proteins. The intracellular machineries that decode and act on these signals are beginning to be described. In addition, the nature of the molecules that associate with intracellular trafficking vesicles to coordinate polarized delivery, tethering, docking, and fusion are also becoming understood. Combined with direct visualization of polarized sorting processes with new technologies in live-cell fluorescent microscopy, new and surprising insights into these once-elusive trafficking processes are emerging. Here we provide a review of these recent advances within an historically relevant context.  相似文献   

17.
Chediak-Higashi Syndrome (CHS) is an autosomal recessive disorder that affects several species including mice, humans, and cattle. Evidence based on clinical characteristics and somatic cell genetics suggests that mutations in a common gene cause CHS in the three species. The CHS locus on human chromosome 1 and mouse chromosome 13 encodes a lysosomal trafficking regulator formerly known as LYST, now known as CHS1, and is defective in CHS patients and beige mice, respectively. We have mapped the CHS locus to the proximal region of bovine chromosome 28 by linkage analysis using microsatellite markers previously mapped to this chromosome. Furthermore, we have identified a missense A:T-->G:C mutation that results in replacement of a histidine with an arginine residue at codon 2015 of the CHS1 gene. This mutation is the most likely cause of CHS in Wagyu cattle. In addition, we describe quick, inexpensive, PCR based tests that will permit elimination of the CHS mutation from Wagyu breeding herds.  相似文献   

18.
Chediak–Higashi syndrome (CHS) is caused by mutations in the gene encoding LYST protein, the function of which remains poorly understood. Prominent features of CHS include defective secretory lysosome exocytosis and the presence of enlarged, lysosome‐like organelles in several cell types. In order to get further insight into the role of LYST in the biogenesis and exocytosis of cytotoxic granules, we analyzed cytotoxic T lymphocytes (CTLs) from patients with CHS. Using confocal microscopy and correlative light electron microscopy, we showed that the enlarged organelle in CTLs is a hybrid compartment that contains proteins components from recycling‐late endosomes and lysosomes. Enlargement of cytotoxic granules results from the progressive clustering and then fusion of normal‐sized endolysosomal organelles. At the immunological synapse (IS) in CHS CTLs, cytotoxic granules have limited motility and appear docked while nevertheless unable to degranulate. By increasing the expression of effectors of lytic granule exocytosis, such as Munc13‐4, Rab27a and Slp3, in CHS CTLs, we were able to restore the dynamics and the secretory ability of cytotoxic granules at the IS. Our results indicate that LYST is involved in the trafficking of the effectors involved in exocytosis required for the terminal maturation of perforin‐containing vesicles into secretory cytotoxic granules.   相似文献   

19.
SNARE proteins play a central role in the process of intracellular membrane fusion. Indeed, the interaction of SNAREs present on two opposing membranes is generally believed to provide the driving force to initiate membrane fusion. Eukaryotic cells express a large number of SNARE isoforms, and the function of individual SNAREs is required for specific intracellular fusion events. Exocytosis, the fusion of secretory vesicles with the plasma membrane, employs the proteins syntaxin and SNAP-25 as plasma membrane SNAREs. As a result, exocytosis is dependent upon the targeting of these proteins to the plasma membrane; however, the mechanisms that underlie trafficking of exocytic syntaxin and SNAP-25 proteins to the cell surface are poorly understood. The intracellular trafficking itinerary of these proteins is particularly intriguing as syntaxins are tail-anchored (or Type IV) membrane proteins, whereas SNAP-25 is anchored to membranes via a central palmitoylated domain-there is no common consensus for the trafficking of such proteins within the cell. In this review, we discuss the plasma membrane targeting of these essential exocytic SNARE proteins.  相似文献   

20.
Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号