首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block‐design in a pine‐bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry (Vaccinium myrtillus) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA‐treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf‐chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.  相似文献   

2.
Resource availability is an important factor affecting the capacity of compensatory growth after grazing. We performed a greenhouse experiment with Poa bulbosa, a small perennial grass of the Mediterranean and Central Asian grasslands, to test the importance of nutrient availability for compensatory growth after clipping. We also compared the results with predictions of the limited resource model (LRM). Plants were grown at low and high fertilization levels and subjected to a clipping treatment. Contrary to the LMR, we found that in Poa plants compensatory growth occurred under the high fertilization level, while it did not occur under the low level. The LMR predicts a higher tolerance for grazing in the stressful environment. Our plants showed a significant decrease in their relative growth rates (RGR) after clipping. Although the plants allocated a 32–188% greater fraction of the mass to lamina growth after clipping, this greater allocation to the leaves did not fully compensate for the initial reduction in leaf area ratio (LAR). A sensitivity analysis showed for the clipped plants under the high fertilization treatment, that changes in leaf allocation (f lam) enabled the plants to compensate for a part of the potential loss caused by defoliation. Probably, the increased biomass allocation comes largely from the bulbs. We conclude that the inconsistency of the LRM with our results originates in the lack of compensatory mechanisms in the model. To better understand how environmental conditions affect tolerance to herbivory, the effects of compensatory growth should be taken into account.  相似文献   

3.
Summary The effect of full sunlight, 60%, or 90% attenuated light on photosynthetic rate, growth, leaf morphology, dry weight allocation patterns, phenology, and tolerance to clipping was examined in the glasshouse for steppe populations of the introduced grass, Bromus tectorum. The net photosynthetic response to light for plants grown in shade was comparable to responses for plants grown in full sunlight. Plants grown in full sunlight produced more biomass, tillers and leaves, and allocated a larger proportion of their total production to roots than plants grown in shade. The accumulation of root and shoot biomass over the first two months of seedling growth was primarily responsible for the larger size at harvest of plants grown in full sunlight. Plants grown under 60% and 90% shade flowered an average of 2 and 6 weeks later, respectively, than plants grown in full sunlight. Regrowth after clipping was greater for plants grown in full sunlight compared to those grown in shade. Even a one-time clipping delayed flowering and seed maturation; the older the individual when leaf area was removed, the greater the delay in its phenology. Repeated removal of leaf area was more frequently fatal for plants in shade than in full sunlight. For plants originally grown in full sunlight, regrowth in the dark was greater than for shaded plants and was more closely correlated to non-flowering tiller number than to plant size. This correlation suggests that etiolated regrowth is more likely regulated by the number of functional meristems than by differences in the size of carbohydrate pools. Thus, shading reduces the rate of growth, number of tillers, and ability to replace leaf area lost to herbivory for B. tectorum. These responses, in turn, intensify the effect of competition and defoliation for this grass in forests. B. tectorum is largely restricted to forest gaps at least in part because of its inability to acclimate photosynthetically, the influence of shade on resource allocation, and the role of herbivory in exacerbating these effects.  相似文献   

4.
1. The pattern of attack by the leaf‐galling insect Neopelma baccharidis (Homoptera: Psyllidae) was studied in three populations of the dioecious shrub Baccharis dracunculifolia (Asteraceae) in south‐eastern Brazil. The plant vigour hypothesis, which predicts higher rates of attack and increased herbivore performance on the longest plant shoots, was tested. This work also provides further information for the study of differential herbivory in dioecious plants. 2. In total, 9200 shoots were collected randomly from 46 male and 47 female plants belonging to the three populations. Shoot length, number of leaves per shoot, rate of galling, and survival of psyllids did not differ between male and female plants. Another population on the Campus of the Federal University of Minas Gerais was used only to determine the pattern of shoot growth. 3. The hypothesis of sex‐mediated herbivory was not corroborated in this study. 4. The frequency of galling increased with increasing shoot length, as predicted by the plant vigour hypothesis. Nevertheless, the number of oviposition sites (leaf buds) increased with shoot length. 5. The performance of the galling herbivore was not related to shoot length in the plant populations studied. 6. In conclusion, Neopelma baccharidis did not select shoots based on length only.  相似文献   

5.
Vergés A  Pérez M  Alcoverro T  Romero J 《Oecologia》2008,155(4):751-760
Herbivory can induce changes in plant traits that may involve both tolerance mechanisms that compensate for biomass loss and resistance traits that reduce herbivore preference. Seagrasses are marine vascular plants that possess many attributes that may favour tolerance and compensatory growth, and they are also defended with mechanisms of resistance such as toughness and secondary metabolites. We quantified phenotypic changes induced by herbivore damage on the temperate seagrass Posidonia oceanica in order to identify specific compensatory and resistance mechanisms in this plant, and to assess any potential trade-offs between these two strategies of defence. We simulated three natural levels of fish herbivory by repeatedly clipping seagrass leaves during the summer period of maximum herbivory. Compensatory responses were determined by measuring shoot-specific growth, photosynthetic rate, and the concentration of nitrogen and carbon resources in leaves and rhizomes. Induced resistance was determined by measuring the concentration of phenolic secondary metabolites and by assessing the long-term effects of continued clipping on herbivore feeding preferences using bioassays. Plants showed a significant ability to compensate for low and moderate losses of leaf biomass by increasing aboveground growth of damaged shoots, but this was not supported by an increase in photosynthetic capacity. Low levels of herbivory induced compensatory growth without any measurable effects on stored resources. In contrast, nitrogen reserves in the rhizomes played a crucial role in the plant’s ability to compensate and survive herbivore damage under moderate and high levels of herbivory, respectively. We found no evidence of inducibility of long-term resistance traits in response to herbivory. The concentration of phenolics decreased with increasing compensatory growth despite all treatments having similar carbon leaf content, suggesting reallocation of these compounds towards primary functions such as cell-wall construction.  相似文献   

6.
Tolerance is the ability of a plant to regrow or reproduce following damage. While experimental studies typically measure tolerance in response to the intensity of herbivory (i.e., the amount of leaf tissue removed in one attack), the impact of how many times plants are attacked during a growing season (i.e., the frequency of damage) is virtually unexplored. Using experimental defoliations that mimicked patterns of attack by leaf-cutter ants (Atta spp.), we examined how the frequency of herbivory influenced plant tolerance traits in six tree species in Brazil’s Cerrado. For 2 years we quantified how monthly and quarterly damage influenced individual survivorship, relative growth rate, plant architecture, flowering, and foliar chemistry. We found that the content of leaf nitrogen (N) increased among clipped individuals of most species, suggesting that Atta influences the allocation of resources in damaged plants. Furthermore, our clipping treatments affected tree architecture in ways thought to promote tolerance. However, none of our focal species exhibited a compensatory increase in growth (increment in trunk diameter) in response to herbivory as relative growth rates were significantly lower in clipped than in unclipped individuals. In addition, the probability of survival was much lower for clipped plants, and lower for plants clipped monthly than those clipped quarterly. For plants that did survive, simulated herbivory dramatically reduced the probability of flowering. Our results were similar across a phylogenetically distinct suite of species, suggesting a potential extendability of these findings to other plant species in this system.  相似文献   

7.
A laboratory study was conducted to determine the effects of defoliation and denodulation on compensatory growth of Medicago sativa (L.). Plants grown hydroponically in clear plastic growth pouches were subjected to 0 and 50% nodule pruning, and 0, 25, 50, and 75% defoliation by clipping trifoliate leaves. An additional experiment was conducted to determine if clipping leaves simulated herbivory by Hypera postica (Gyllenhal) larvae. Previously, we determined that nodule pruning accurately simulated herbivory by Sitona hispidulus (L.) larvae (Quinn & Hall, 1992). Results indicated that denodulation stimulated nodule growth and caused exact compensation in standing and total number of nodules per plant within 15 days and in standing nodule biomass within 22 days of treatment. Denodulation caused a significant reduction (13%) in final shoot biomass, but did not affect significantly final root biomass. Percentage of change in number of trifoliate leaves per plant increased with the level of defoliation. Within 22 days of treatment, total number of trifoliate leaves per plant was similar to controls. However, final standing shoot biomasses were significantly less that controls, indicating undercompensatory growth. Shoot biomasses of the 25-, 50-, and 75%-defoliated plants were 18, 20, and 36% lower than controls, respectively. Nodule biomass per plant was reduced by 24 and 32% in 50- and 75%-defoliated plants, respectively, but was not affected significantly by 25% defoliation. Root biomass was affected by all levels of defoliation. Clipping trifoliate leaves accurately simulated defoliation by H. postica larvae. Our results indicated that partial defoliation affected shoot, root, and nodule biomass of M. sativa, but that partial denodulation only affected shoot biomass.  相似文献   

8.
Lentz  Kendra A.  Cipollini  Donald F. 《Plant Ecology》1998,139(1):125-131
The independent and interactive effects of light and simulated herbivory on growth and biomass allocation in the endangered emergent sedge, Scirpus ancistrochaetus Schuyler, were examined in a 15-week common garden experiment. Light level was manipulated through the use of shade cloth to attain shading levels of 0%, 30%, 63% and 90%, while herbivory was simulated by reducing plant height by 50% six weeks into the experiment. Multivariate Analysis of Variance (MANOVA) of final total (shoot + root) plant mass, leaf width and root to shoot ratio (R:S) indicated overall significant effects of both light and the interaction of light and clipping. Means of these variables decreased with decreasing light level. Furthermore, means of these variables were generally higher for clipped plants than unclipped plants in 0% shade, while they tended to be lower in clipped plants in all other levels of shade. Maximum leaf height was also significantly affected by light. Leaf height was similar in all treatments for the first 11 weeks. For the last four weeks of the experiment, however, leaf height was lowest in plants grown in 0% shade, highest in plants grown in 63 and 90% shade, and intermediate in plants grown in 30% shade. Clipped plants tended to be taller than unclipped plants at lower levels of shade, while the opposite was true at higher levels of shade, although effects were marginally significant. Both light and the interactive effect of light and clipping were important determinants of growth of S. ancistrochaetus in this experiment and therefore may be important influences on its distribution within and among pond habitats.  相似文献   

9.
Aquatic macrophytes with floating leaves are often key ecological species that affect entire aquatic ecosystems. Here we describe an investigation of the importance of insect herbivory for population growth and leaf senescence in the yellow water lily (Nuphar lutea). In order to gain a general picture of the importance of herbivory under different conditions, we experimentally manipulated herbivory in a large lily population in natural still water and observed the natural development of 32 smaller populations in flowing water. Herbivory drastically increased leaf senescence, reducing leaf density. In the still water, over one summer, leaf density increased by a factor of 1.23 in the presence of water lily leaf beetles and 1.61 when herbivory was eliminated. In flowing water, population growth was restricted mainly by leaf crowdedness, which limited large dense populations. Herbivory by water lily leaf beetles also had a limiting effect on yellow water lily, again mainly in large dense populations. Small populations supported a lower density of beetles. Previous studies have not addressed population-level responses of vascular plants with floating leaves. Our results suggest that herbivory can result in greater light penetration into the water and reduce “enemy-free space” for aquatic species that find such space in water lily stands. We suggest that the water lily leaf beetle should be considered an “ecological engineer.”  相似文献   

10.
Vertebrate herbivores generally have greater effects than invertebrates on plants. However, few studies have investigated the effects of both invertebrate and vertebrate herbivores on a single plant species. In New Zealand, nationwide declines in mistletoe populations have often been attributed to possum herbivory, but never to insect herbivory. The main goal of the present study was to document levels of vertebrate and invertebrate herbivory on endemic New Zealand mistletoe plants to suggest whether herbivory is leading to mistletoe decline. In the present study, the annual amount of leaf loss from herbivory by the brushtail possum (Trichosurus vulpecula), insect herbivory and leaf abscission were measured in two populations each of three mistletoe species (Alepis flavida, Peraxilla colensoi, and Peraxilla tetrapetala, Loranthaceae). In two populations of each species from February 1997 to February 1998, abscission accounted for the most leaf loss (range 10–84% of total mean leaf area, mean 33%), whereas insects and possums usually removed small and similar amounts (less than 3%). Possum browse caused large amounts of abscission in only one population (A. flavida at Eglinton). Observed possum browse was more heterogeneous than insect browse among branches within a plant (possum coefficient of variation = 2.63, insect CV = 1.98, P < 0.001), among plants in a population (possum CV = 2.15, insect CV = 0.69, P < 0.001), and between populations (possum CV = 1.36, insect CV = 1.09). Moreover, insects damaged 100% of the study plants but never removed more than 16% of leaf area on a single plant, whereas possums only browsed 32% of the study plants but severely defoliated some plants. Thus, while the mean amount of biomass removed across a population may have important consequences for mistletoe survival, the effect of possums on mistletoe populations may also depend on the heterogeneity of browse among individuals in the population.  相似文献   

11.
Theory predicts that plant defensive traits are costly due to trade-offs between allocation to defense and growth and reproduction. Most previous studies of costs of plant defense focused on female fitness costs of constitutively expressed defenses. Consideration of alternative plant strategies, such as induced defenses and tolerance to herbivory, and multiple types of costs, including allocation to male reproductive function, may increase our ability to detect costs of plant defense against herbivores. In this study we measured male and female reproductive costs associated with induced responses and tolerance to herbivory in annual wild radish plants (Raphanus raphanistrum). We induced resistance in the plants by subjecting them to herbivory by Pieris rapae caterpillars. We also induced resistance in plants without leaf tissue removal using a natural chemical elicitor, jasmonic acid; in addition, we removed leaf tissue without inducing plant responses using manual clipping. Induced responses included increased concentrations of indole glucosinolates, which are putative defense compounds. Induced responses, in the absence of leaf tissue removal, reduced plant fitness when five fitness components were considered together; costs of induction were individually detected for time to first flower and number of pollen grains produced per flower. In this system, induced responses appear to impose a cost, although this cost may not have been detected had we only quantified the traditionally measured fitness components, growth and seed production. In the absence of induced responses, 50% leaf tissue removal, reduced plant fitness in three out of the five fitness components measured. Induced responses to herbivory and leaf tissue removal had additive effects on plant fitness. Although plant sibships varied greatly (49–136%) in their level of tolerance to herbivory, costs of tolerance were not detected, as we did not find a negative association between the ability to compensate for damage and plant fitness in the absence of damage. We suggest that consideration of alternative plant defense strategies and multiple costs will result in a broader understanding of the evolutionary ecology of plant defense.  相似文献   

12.
1. Invertebrate herbivory was studied in twenty-eight populations of the submerged macrophyte Potamogeton perfoliatus in Danish streams and lakes in mid-June. All populations but one experienced invertebrate herbivory and loss ranged from 0 to 11.9% of leaf area among populations. Loss generally increased with leaf age towards the base of the plants, and young apical leaves were rarely damaged. 2. Herbivory loss was significantly higher in streams (mean 5.0%) than in lakes (mean 2.2%), but varied greatly among populations within the same stream or lake and was not correlated to physico-chemical site characteristics, size or density of plant population, or leaf N and P content. High levels of invertebrate herbivory were therefore not associated with certain types of streams or lakes. 3. High herbivore biomass relative to abundance of plants was conducive to high loss. In streams, the biomass of the trichopteran Anabolia nervosa accounted for 50% of the variability in loss. No single species appeared to be equally important in lakes, although loss was correlated to the biomass of the chrysomelid beetle Macroplea appendiculata. Obligate herbivores, such as lepidopteran larvae, apparently exerted little damage on P. perfoliatus, and leaf mining and channelization from specialist feeders were negligible. It is concluded that shredders acting as facultative herbivores were the most important invertebrate herbivores on P. perfoliatus in Danish freshwaters.  相似文献   

13.
The joint effects of multiple herbivores on their shared host plant have received increasing interest recently. The influence of herbivores on population dynamics of their host plants, especially the relative roles of different types of damage, is, however, still poorly understood. Here, we present a modelling approach, including both deterministic and stochastic matrix modelling, to be used in estimating fitness effects of multiple herbivores on perennial plants. We examined the effects and relative roles of two specialist herbivores, a pre-dispersal seed predator, Euphranta connexa, and a leaf-feeding moth, Abrostola asclepiadis, on the population dynamics and long-term fitness of their shared host plant, a long-lived perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). We collected demographic data during 3 years and combined these data with the effects of natural levels of herbivory measured from the same individuals. We found that both seed predation and leaf herbivory reduced population growth of V. hirundinaria, but only very high damage levels changed the growth trend of the vigorously growing study populations from positive to negative. Demographic modelling indicated that seed predation had a greater impact on plant population growth than leaf herbivory. The effect of leaf herbivory was weaker and diminished with increasing level of seed predation. Evaluation of individual fitness components, however, suggested that leaf herbivory contributed more strongly to host plant fitness than seed predation. Our results emphasize that understanding the effects of a particular herbivore on plant population dynamics requires also knowledge on other herbivores present in the system, because the effect of a particular type of herbivory on plant population dynamics is likely to vary according to the intensity of other types of herbivory. Furthermore, evaluating herbivore impact from using individual fitness components does not necessarily reflect the long-term effects on total plant fitness.  相似文献   

14.
Herbivory and resource interact to influence plant regrowth following grazing, but few detailed investigations on grazing tolerance at population levels are available. We conducted two pot experiments along a simulated grazing gradient (0%, 25%, 50% and 75% of shoot removal) at three water or nutrient levels to determine the interaction of resource and herbivory on Leymus chinensis, a perennial, dominant species in the eastern Eurasian steppes. Interactions between water availability and clipping intensity on the relative height growth rate (RHGR) and bud number were significant. Significant interactions between nutrient and clipping on RHGR, total biomass and specific leaf area (SLA) were also found. Total biomass and bud number, showing a unimodal curve along the clipping gradient in resource-rich environments, were highest at light clipping level, suggesting that this species has the plastic compensatory responses from under- to overcompensation. Interactions between herbivory and water or nutrient were opposite to each other. The “cooperative” interactions between water and herbivory magnified the difference in grazing tolerance of L. chinensis between high and low water treatments. The “antagonistic” interactions between nutrient and herbivory, on the other hand, were reflected in the lower tolerance to heavy clipping in the high nutrient than low nutrient treatments. Results partly support the limiting resource model (LRM). A modified and simplified graphic model of the LRM was proposed based on our results. The new LRM clearly demonstrated that “cooperative” interactions between varying water levels and clipping intensities aggravate the detrimental impacts of herbivores on plant growth and reproduction, whereas “antagonistic” interactions between nutrient and grazing alleviate the negative effects of herbivores. Biomass compensation and density compensation were identified as main mechanisms of herbivory tolerance in this clonal species.  相似文献   

15.
Summary Herbivory can alter the balance between sources and sinks within a plant, and changes in the source-sink ratio often lead to changes in plant photosynthetic rates. We investigated how feeding by three insect herbivores affected photosynthetic rates and growth of goldenrod (Solidago altissima). One, a phloem-sap feeding aphid (Uroleucon caligatum), creates an additional sink, and the other two, a leaf-chewing beetle (Trirhabda sp.) and a xylem-sap feeding spittlebug (Philaenus spumarius) both reduce source supply by decreasing leaf area. Plants were grown outside in large pots and insects were placed on them at predetermined densities, with undamaged plants included as controls. All insects were removed after a 12-day feeding period. We measured photosynthetic rates both of damaged leaves and of undamaged leaves that were produced after insect removal. Photosynthetic rates per unit area of damaged leaves were reduced by spittlebug feeding, but not by beetle or aphid feeding. Conductance of spittlebugdamaged leaves did not differ from controls, but internal carbon dioxide concentrations were increased. These results indicate that spittlebug feeding does not cause stomatal closure, but impairs fixation within the leaf. Effects of spittlebug feeding on photosynthetic rates persisted after the insects were removed from the plants. Photosynthetic rates per unit area of leaves produced after insect removal on spittlegug-damaged plants were lower than control levels, even though the measurements were taken 12 days after insect removal. The measurement leaf on spittlebugdamaged plants was reduced in area by 27% relative to the controls, but specific leaf area (leaf area/leaf weight) was increased by 18%. Because of the shift in specific leaf area, photosynthetic rates were also examined per unit leaf weight, and when this was done there were no significant differences between control and spittlebug-damaged plants. Beetle and aphid feeding had no effects on the photosynthetic rate of the leaves produced after insect removal. Plant relative growth rates (in terms of height) were reduced by spittlebugs during the period that the insects were feeding on the plants. Relative growth rates of spittlebug-damaged plants were increased above control levels after insect removal, but these plants were still shorter than controls 17 days after insect removal. Beetles and aphids did not affect plant relative growth rates or plant height. Feeding by both spittlebugs and beetles reduced leaf area, and the effect of the spittlebug was more severe than that of the beetle. These results show that effects of herbivory on photosynthetic rates cannot be predicted simply by considering changes in the source-sink ratio, and that spittlebug feeding is more damaging to the host plant than beetle or aphid feeding.  相似文献   

16.
Separate and combined effects of root and leaf herbivores on plant growth, flower visitation and seed set were tested in a factorial experiment using potted mustard, Sinapis arvensis, at an old fallow field. A 50% leaf removal by cabbageworms (Pieris rapae) when the seedlings had their first four leaves reduced plant height and shoot mass, and delayed the onset of flowering. Root herbivory by two wireworms (Agriotes sp.) over the whole experiment changed flower visitation; the number of flower visitors per plant was higher in plants with root herbivores than in plants without root herbivores. Combined leaf and root herbivory affected flowering period, number of fruits per plant and number of seeds per fruit. Plants attacked by leaf and root herbivores had a shorter flowering period and produced fewer fruits per plant than plants with root herbivores only. Although the experimental plants faced major herbivore-induced growth changes, plant reproduction (seed set and weight per plant) was similar in all treatments, documenting their ability to effectively compensate for leaf and root herbivory.  相似文献   

17.
Phaseolus vulgaris BBL-290 plants were grown in growth chambers in the Southeastern Plant Environment Laboratory and exposed to either single (at seedling, flower, or podfill) or multiple (biweekly or weekly) treatments of ferulic acid (FA). In the first experiment, plants were harvested one week after FA treatment (0, 1.0, 2.0 mM) and at final harvest (56 days old). FA delayed leaf expansion during the seedling and flowering stages. The total plant leaf area and the plant dry weight of plants treated with 1.0 and 2.0 mM FA as seedlings were reduced one week after treatment by 38–48%. The total plant leaf area and the plant dry weight of plants treated at flowering with 2.0 mM FA were reduced by 25% one week after treatment. Treatment with 2.0 mM FA at podfill caused the senescence and abscission of older leaves and reduced total plant leaf area, plant dry weight and mean pod dry weight by 54, 40, and 48%, respectively, one week after treatment. The plants treated at the seedling and flowering stages recovered by final harvest. In a subsequent experiment, FA (0, 0.50, 1.0, 1.5 mM) reduced total plant leaf area at the seedling and flowering stages but not at podfill. The youngest expanding leaves were most sensitive to FA at flowering. The leaf area of these leaves was reduced by 35 and 25%, one and two weeks after treatment, respectively. Their absolute growth rates were reduced from 31 to 56% one week after treatment at flowering. Their relative growth rates were reduced by 50% one week after treatment. Growth rates then recovered within two weeks after treatment. In the final experiment, biweekly exposures of FA (0.25, 0.50, 0.75, 1.0) reduced total plant leaf area but did not affect any other growth parameters. Weekly exposures of FA (0.25, 0.50, 0.75, 1.0) reduced total plant leaf area up to 34%, absolute growth rate up to 58%, leaf number up to 31% and pod number up to 58%. As the frequency of exposure to FA increased, the concentration necessary to affect bean plant growth and development decreased.  相似文献   

18.
Abstract. The annual cycle of vegetative growth in the Mediterranean shrub Halimium halimifolium (Cistaceae) subjected to simulated and natural browsing on the stabilized sands of Doñana National Park (SW Spain) is described. In a drier area without herbivory (Monte Intermedio) plants were subjected to different intensities of clipping. In a more humid area with high herbivory pressure (Monte Negro) plants were isolated by cages. Plants were monitored monthly from February to November 1994. Vegetative growth starts in March and ends in June or July, according to temperature and water availability. Plants intensely clipped and plants subjected to natural browsing responded maximally regarding shoot length, and number of leaves on main shoots and branches. Clipped plants, however, did not reach the height and cover of controls.  相似文献   

19.
Modern concepts of plant tolerance to herbivory are primarily based on studies of short‐term severe damage, whereas the effects of minor chronic damage to long‐lived woody plants, corresponding to background herbivory (2–15% annual loss of foliar biomass in boreal and temperate forests), remain poorly understood. In our experiment, the annual removal of 2, 4, 8 and 16% of the leaf area from naturally growing mountain birch Betula pubescens subsp. czerepanovii saplings during a seven‐year period resulted in a pronounced reduction of plant vertical growth (–30, –34, –45 and –78%, respectively). Leaf size decreased first (already after one year of the 16% treatment), resulting in the reduction of the total leaf area. This effect was followed by a considerable decrease in the length of long shoots in all treatments. Leaf number on the plant was maintained for a longer time, being reduced by the end of the experiment in 16% treatment only; no changes in specific leaf area or chlorophyll fluorescence were observed in either of the treatments. This pattern may indicate that the plant reallocates resources from the growth of the woody parts to the maintenance of the photosynthetic area, and can be seen as a strategy of tolerance to minor herbivory, whereas compensatory responses typical of severe herbivory (increased photosynthesis rates and shoot regrowth) have not been detected. The predicted 2–5% increase in background herbivory due to climate warming can potentially produce previously unrecognised negative impacts on tree growth. We conclude that in the long term, background herbivory is likely to impose stronger effects on the growth of woody plants than short‐term devastating outbreaks of defoliators, thus contributing more to the development of plant evolutionary adaptations to herbivory than severe but episodic bouts of damage.  相似文献   

20.
Winter browsing by mammalian herbivores is known to induce a variety of morphological and physiological changes in plants. Browsing has been suggested to decrease the carbohydrate reserves in woody plants, which might lead to reduced tannin production in leaves during the following summer, and consequently, to increased herbivore damage on leaves. We conducted a clipping experiment with mature mountain birch trees and measured the effects of clipping on birch growth, leaf chemistry and toughness, as well as on the performance of insect herbivores. Leaves grew larger and heavier per unit area in the clipped ramets and had a higher content of proteins than leaves in the control trees. Clipping treatment did not affect the total content of sugars in the leaves (mg g?1), suggesting that a moderate level of clipping did not significantly reduce the carbohydrate pools of fully‐grown mountain birch trees. Furthermore, the contents of proanthocyanidins (condensed tannins) and gallotannins were slightly higher in the leaves of clipped ramets, contrary to the hypothesis of reduced tannin production. The effects of clipping treatment on leaf and shoot growth and on foliar chemistry were mainly restricted to the clipped ramets, without spreading to untreated ramets within the same tree individual. The effects of clipping on leaf characters varied during the growing season; for instance, leaf toughness in clipped ramets was higher than toughness in control trees and ramets only when leaves were mature. Accordingly, clipping had inconsistent effects on insect herbivores feeding at different times of the growing season. The generally small impact of clipping on herbivore performance suggests that the low intensity of natural browsing at the study area, simulated by our clipping treatment, does not have strong consequences for the population dynamics of insect herbivores on mountain birch via enhanced population growth caused by browsing‐induced changes in food quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号