首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution that isolated vacuoles have made to understanding sucrose storage and mobilization is reviewed briefly, with particular reference to the storage root of red beet (Beta vulgaris L.). Work with isolated vacuoles has shown that in this tissue sucrose is confined to the vacuole and some progress has been made in elucidating the possible mechanism of sucrose transport into the vacuole. The evidence that this is a H+: sucrose antiport, dependent on the activity of a proton-translocating ATPase is examined. It is concluded that while there is some evidence for the presence of a proton pump, a link between this and sucrose uptake has still to be established. Using isolated vacuoles it has been demonstrated that during mobilization of sucrose, hydrolysis occurs within the vacuole but the mechanism of unloading of hexoses from the vacuole remains to be elucidated.  相似文献   

2.
Kodama Y  Fujishima M 《Protoplasma》2005,225(3-4):191-203
Summary. Each symbiotic Chlorella sp. of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole, and thereby the alga is protected from digestion by lysosomal fusion. Algae-free cells can be reinfected with algae isolated from algae-bearing cells by ingestion into digestive vacuoles. To examine the timing of acidification and lysosomal fusion of the digestive vacuoles and of algal escape from the digestive vacuole, algae-free cells were mixed with isolated algae or yeast cells stained with pH indicator dyes at 25 ± 1 °C for 1.5 min, washed, chased, and fixed at various time points. Acidification of the vacuoles and digestion of Chlorella sp. began at 0.5 and 2 min after mixing, respectively. All single green Chlorella sp. that had been present in the host cytoplasm before 0.5 h after mixing were digested by 0.5 h. At 1 h after mixing, however, single green algae reappeared in the host cytoplasm, arising from those digestive vacuoles containing both nondigested and partially digested algae, and the percentage of such cells increased to about 40% at 3 h. At 48 h, the single green algae began to multiply by cell division, indicating that these algae had succeeded in establishing endosymbiosis. In contrast to previously published studies, our data show that an alga can successfully escape from the host’s digestive vacuole after acidosomal and lysosomal fusion with the vacuole has occurred, in order to produce endosymbiosis. Correspondence and reprints: Biological Institute, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

3.
ABSTRACT. The temporal changes in the size and pH of digestive vacuoles (DV) in Paramecium caudatum were reevaluated. Cells were pulsed briefly with polystyrene latex spheres or heat-killed yeast stained with three sulfonphthalein indicator dyes. Within 5 min of formation the intravacuolar pH declined from ~7 to 3. With the exception of a transient and early increase in vacuolar size, vacuole condensation occurred rapidly and paralleled the acidification so that vacuoles reached their lowest pH and minimal size simultaneously. Neutralization and expansion of vacuole size began when vacuoles were GT8 min old. No labeled vacuoles were defecated prior to 21 min after formation but almost all DV were defecated within 1 h so that the digestive cycle of individual vacuoles ranged from 21 to 60 min. Based on these size and pH changes, the presence of acid phosphatase activity, and membrane morphology, digestive vacuoles can be grouped into four stages of digestion. The DV-I are GT6 min old and undergo rapid condensation and acidification. The DV-II are between 4 to 10 min old and are the most condensed and acidic vacuoles. The DV-III range in age from 8 to ~20 min and include the expanding or expanded vacuoles that result from lysosomes fusing with DV-II. The DV-IV are GD21 min old, and since digestion is presumably completed, they can be defecated. The rise in intravacuolar pH that accompanies vacuole expansion suggests that lysosomes play a role in vacuole neutralization in addition to their degradative functions. The acidification and condensation processes in DV-I appear to be unrelated to lysosomal function, as no acid phosphaiase activity has been detected at this stage, but may be related to phagosomal functions important in killing food organisms, denaturing proteins prior to digestion, and preparing vacuole membrane for fusion with lysosomes.  相似文献   

4.
The vacuolar apparatus of various plant cells consists of two distinct features: the large central vacuole and peripheral vacuoles which are derived from invaginations of the plasma membrane. Peripheral vacuoles are conspicuous structures in both living and fixed hair or filament cells of Tradescantia virginiana. They occur as spherical structures along the inner boundary of the peripheral cytoplasm and can be recognized as projections into the central vacuole. These structures are variable in size and number within a cell and can represent a significant proportion of the volume of the vacuole. Peripheral vacuoles most frequently are observed in motion with the streaming cytoplasm although their velocity is usually somewhat slower that that of the cytoplasmic organelles. Ultrastructural studies show two closely approximated membranes, one for each vacuole, in areas where a peripheral vacuole projects into the central vacuole. These are separated by an intermembrane zone continuous with the peripheral cytoplasm. The movement of organelles over the perimeter of the peripheral vacuole is presumed to occur along this intermembrane zone. The internal area of the peripheral vacuoles may appear empty although some contain a vesicular content of unknown origin and function.  相似文献   

5.
During infection of cells by Legionella pneumophila, the bacterium secretes a large number of effector proteins into the host cell cytoplasm, allowing it to alter many cellular processes and make the vacuole and the host cell into more hospitable environments for bacterial replication. One major change induced by infection is the recruitment of ER-derived vesicles to the surface of the vacuole, where they fuse with the vacuole membrane and prevent it from becoming an acidified, degradative compartment. However, the recruitment of mitochondria to the region of the vacuole has also been suggested by ultrastructural studies. In order to test this idea in a controlled and quantitative experimental system, and to lay the groundwork for a genome-wide screen for factors involved in mitochondrial recruitment, we examined the behavior of mitochondria during the early stages of Legionella pneumophila infection of Drosophila S2 cells. We found that the density of mitochondria near vacuoles formed by infection with wild type Legionella was not different from that found in dotA mutant-infected cells during the first 4 hours after infection. We then examined 4 parameters of mitochondrial motility in infected cells: velocity of movement, duty cycle of movement, directional persistence and net direction. In the 4 hours following infection, most of these measures were indistinguishable between wild type and dotA.infection. However, wild type Legionella did induce a modest shift in the velocity distribution toward faster movement compared dotA infection, and a small downward shift in the duty cycle distribution. In addition, wild type infection produced mitochondrial movement that was biased in the direction of the bacterial vacuole relative to dotA-, although not enough to cause a significant accumulation within 10 um of the vacuole. We conclude that in this host cell, mitochondria are not strongly recruited to the vacuole, nor is their motility dramatically affected.  相似文献   

6.
Large vacuoles are characteristic of plant and fungal cells, and their origin has long attracted interest. The cellular slime mould provides a unique opportunity to study the de novo formation of vacuoles because, in its life cycle, a subset of the highly motile animal-like cells (prestalk cells) rapidly develops a single large vacuole and cellulosic cell wall to become plant-like cells (stalk cells). Here we describe the origin and process of vacuole formation using live-imaging of Dictyostelium cells expressing GFP-tagged ammonium transporter A (AmtA-GFP), which was found to reside on the membrane of stalk-cell vacuoles. We show that stalk-cell vacuoles originate from acidic vesicles and autophagosomes, which fuse to form autolysosomes. Their repeated fusion and expansion accompanied by concomitant cell wall formation enable the stalk cells to rapidly develop turgor pressure necessary to make the rigid stalk to hold the spores aloft. Contractile vacuoles, which are rich in H+-ATPase as in plant vacuoles, remained separate from these vacuoles. We further argue that AmtA may play an important role in the control of stalk-cell differentiation by modulating the pH of autolysosomes.  相似文献   

7.
Large numbers of vacuoles (106-107) have been isolated from Sorghum bicolor protoplasts and analyzed for the cyanogenic glucoside dhurrin. Leaves from light-grown seedlings were incubated for 4 hours in 1.5% cellulysin and 0.5% macerase to yield mesophyll protoplasts which then were recovered by centrifugation, quantitated by a hemocytometer, and assayed for cyanogenic glucosides. Mature vacuoles, released from the protoplasts by osmotic shock, were purified on a discontinuous Ficoll gradient and monitored for intactness by their ability to maintain a slightly acid interior while suspended in an alkaline buffer as indicated by neutral red stain. Cyanide analysis of the protoplasts and the vacuoles obtained there from yielded equivalent values of 11 μmoles of cyanogenic glucoside dhurrin per 107 protoplasts or 107 vacuoles. This work supports an earlier study from this laboratory which demonstrated that the vacuole is the site of accumulation of the cyanogenic glucoside in Sorghum.  相似文献   

8.
Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH < 5 in PIKfyve-inhibited mammalian cells. In addition, quantitative fluorescence microscopy of vacuole-targeted pHluorin, a pH-sensitive GFP variant, indicates that fab1Δ vacuoles are as acidic as wild-type yeast. Importantly, we also employed fluorimetry of vacuoles loaded with cDCFDA, a pH-sensitive dye, to show that both wild-type and fab1Δ vacuoles have a pH < 5.0. In comparison, the vacuolar pH of the V-ATPase mutant vph1Δ or vph1Δ fab1Δ double mutant was 6.1. Although the steady-state vacuolar pH is not affected by PtdIns(3,5)P2 depletion, it may have a role in stabilizing the vacuolar pH during salt shock. Overall, we propose a model in which PtdIns(3,5)P2 does not govern the steady-state pH of vacuoles or lysosomes.  相似文献   

9.
SYNOPSIS. Filamentous cyanobacteria are ingested through the cytopharynx of the ciliate Pseudomicrothorax dubius. The cytopharynx is a complex of microtubules and microfilaments located in a highly vesiculated cytoplasm, the phagoplasm. Two types of membrane-bounded phagoplasmic vesicles can be distinguished by their differences in size, fine structure, and acid phosphatase (AcPase) content. One type has a homogeneous, electron-dense interior which is AcPase-positive. These vesicles are present in fed cells and in unfed cells devoid of food vacuoles, and thus appear to be primary lysosomes. During phagocytosis, exocytosis within the cytopharynx of the primary lysosomes results in the elaboration of a food vacuole. The vacuole grows by incorporation of lysosomal membrane; lysosomal hydrolases are liberated into the vacuole. Within less than 1 second of AcPase's entry into the food vacuole, it is detectable within the cyanobacterial cytoplasm, and within 5 seconds, destruction of the cyanobacterial filament is observed. It is hypothesized that the rapidity of hydrolase penetration of the cyanobacterial cell wall is the result of the action of molecules analogous to the “killing agents” of neutrophil leukocytes, which rapidly render bacterial envelopes permeable. AcPase, and presumably other hydrolases, are present in the cyanobacterial filament when filament destruction occurs; they thus appear implicated in this process. Hydrolases may activate an autodestruction mechanism in the cyanobacterium. Firm adherence of the food vacuole membrane to the cyanobacterial filament is demonstrated, and its role in phagocytosis is discussed.  相似文献   

10.
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K+ transport systems allowing K+ to move across the membrane. K+ transport systems in plant organelles act coordinately with the plasma membrane intrinsic K+ transport systems to maintain cytosolic K+ concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K+ channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K+ homeostasis of the cytoplasm. The initial electrophysiological measurements of K+ transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K+ transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K+ transport system has been isolated from cyanobacteria, which may add to our understanding of K+ flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K+ transport proteins.  相似文献   

11.
J774.2 macrophages cultured in medium containing 10 mg/ml sucrose accumulate the sugar by pinocytosis and become highly vacuolated, due to the sugar's osmotic effect within the vacuolar compartment. When such cells are incubated in medium containing 0.5 mg/ml invertase, the enzyme reaches the sucrose vacuoles by pinocytosis, then cleaves the sugar to more permeant monosaccharides. Within 4 hours, the vacuoles shrink to smaller, phase-dense organelles (Cohn and Ehrenreich, 1969, J. Exp. Med., 129:201). We have used this reversible expansion of the lysosomal compartment to address two questions: (1) Does the increased size of the lysosomal compartment affect pinocytic accumulation of solute, and (2) what is the fate of the vacuolar membrane and its soluble content during invertase-induced vacuole shrinkage? Using lucifer yellow (LY) as a probe for pinocytic fluid influx and efflux, we found that vacuolated cells accumulated 30–50% less LY than controls and returned to higher rates of pinocytosis after invertase-induced vacuole shrinkage. A similar reduction in LY accumulation was achieved after feeding cells latex beads to increase the size of the lysosomal compartment. Thus, treatments that increased the size of the lysosomal compartment reduced solute accumulation via pinocytosis. A dramatic shrinkage of LY-containing sucrose vacuoles followed pinocytosis of invertase. Despite this reduction in size of the LY-containing vacuoles, the overall rate of LY efflux did not increase significantly during invertase-induced vacuole collapse. Electron microscopy revealed that during shrinkage, the excess vacuolar membrane was compressed into whorled membranous organelles (residual bodies), with fluid markers (colloidal gold and, by inference, LY) trapped inside. The trapping of LY inside lysosomes as J774.2 macrophages returned to their normal dimensions indicates that nearly all of the surplus membrane contents were removed from circulation as well.  相似文献   

12.
Intact vacuoles were isolated from petals of Hippeastrum and Tulipa (Wagner G.J. and Siegelman, H.W. (1975) Science 190, (1298–1299). The ATPase activity of fresh vacuole suspensions was found to be 2–3 times that of protoplasts from the same tissue. 70–80% of the ATPase activity of intact vacuoles was recovered in tonoplast preparations. The antibiotic Dio-9 at 6 μg/106 vacuoles or protoplasts causes 40% inhibition. However, only the protoplast ATPase is sensitive to oligomycin. N,N′-dicyclohexylcarbodiimide (DCCD) slightly stimulates ATPase activity in both vacuole and protoplast suspensions, whereas ethyl-3-(3-dimethylaminopropyl carbodiimide) (EDAC) strongly inhibits.Spectrophotometric studies show that in the petal the vacuolar contents have a pH of 4.0 for Tulipa and 4.3 for Hippeastrum, whereas the intact isolated vacuole has an internal pH of 7.0 (in pH 8.0 buffer) for Tulipa and about 7.3 for Hippeastrum. Internal ion concentrations of 150, 46, 30, 30 and 6 mM were found for K+, Na+, Mg2+, Cl?, and Ca2+ respectively, which are about the same as those in protoplasts.  相似文献   

13.
Two Types of Ribosome in Mouse–Hamster Hybrid Cells   总被引:87,自引:0,他引:87  
  相似文献   

14.
Data presented in the accompanying paper suggests nascent autophagic vacuoles are formed from RER (Dunn, W. A. 1990. J. Cell Biol. 110:1923-1933). In the present report, the maturation of newly formed or nascent autophagic vacuoles into degradative vacuoles was examined using morphological and biochemical methods combined with immunological probes. Within 15 min of formation, autophagic vacuoles acquired acid hydrolases and lysosomal membrane proteins, thus becoming degradative vacuoles. A previously undescribed type of autophagic vacuole was also identified having characteristics of both nascent and degradative vacuoles, but was different from lysosomes. This intermediate compartment contained only small amounts of cathepsin L in comparison to lysosomes and was bound by a double membrane, typical of nascent vacuoles. However, unlike nascent vacuoles vet comparable to degradative vacuoles, these vacuoles were acidic and contained the lysosomal membrane protein, lgp120, at the outer limiting membrane. The results were consistent with the stepwise acquisition of lysosomal membrane proteins and hydrolases. The presence of mannose-6-phosphate receptor in autophagic vacuoles suggested a possible role of this receptor in the delivery of newly synthesized hydrolases from the Golgi apparatus. However, tunicamycin had no significant effect on the amount of mature acid hydrolases present in a preparation of autophagic vacuoles isolated from a metrizamide gradient. Combined, the results suggested nascent autophagic vacuoles mature into degradative vacuoles in a stepwise fashion: (a) acquisition of lysosomal membrane proteins by fusing with a vesicle deficient in hydrolytic enzymes (e.g., prelysosome); (b) vacuole acidification; and (c) acquisition of hydrolases by fusing with preexisting lysosomes or Golgi apparatus-derived vesicles.  相似文献   

15.
Park J  Knoblauch M  Okita TW  Edwards GE 《Planta》2009,229(2):369-382
Bienertia sinuspersici Akhani has an unusual mechanism of C4 photosynthesis which occurs within individual chlorenchyma cells. To perform C4, the mature cells have two cytoplasmic compartments consisting of a central (CCC) and a peripheral (PCC) domain containing dimorphic chloroplasts which are interconnected by cytoplasmic channels. Based on leaf development studies, young chlorenchyma cells have not developed the two cytoplasmic compartments and dimorphic chloroplasts. Fluorescent dyes which are targeted to membranes or to specific organelles were used to follow changes in cell structure and organelle distribution during formation of C4-type chlorenchyma. Chlorenchyma cell development was divided into four stages: 1—the nucleus and chloroplasts occupy much of the cytoplasmic space and only small vacuoles are formed; 2—development of larger vacuoles, formation of a pre-CCC with some scattered chloroplasts; 3—the vacuole expands, cells have directional growth; 4—mature stage, cells have become elongated, with a distinctive CCC and PCC joined by interconnecting cytoplasmic channels. By staining vacuoles with a fluorescent dye and constructing 3D images of chloroplasts, and by microinjecting a fluorescence dye into the vacuole of living cells, it was demonstrated that the mature cell has only one vacuole, which is traversed by cytoplasmic channels connecting the CCC with the PCC. Immunofluorescent studies on isolated chlorenchyma cells treated with cytoskeleton disrupting drugs suspended in different levels of osmoticum showed that both microtubules and actin filaments are important in maintaining the cytoplasmic domains. With prolonged exposure of plants to dim light, the cytoskeleton undergoes changes and there is a dramatic shift of the CCC from the center toward the distal end of the cell.  相似文献   

16.
Storage proteins are deposited into protein storage vacuoles (PSVs) during plant seed development and maturation and stably accumulate to high levels; subsequently, during germination the storage proteins are rapidly degraded to provide nutrients for use by the embryo. Here, we show that a PSV has within it a membrane-bound compartment containing crystals of phytic acid and proteins that are characteristic of a lytic vacuole. This compound organization, a vacuole within a vacuole whereby storage functions are separated from lytic functions, has not been described previously for organelles within the secretory pathway of eukaryotic cells. The partitioning of storage and lytic functions within the same vacuole may reflect the need to keep the functions separate during seed development and maturation and yet provide a ready source of digestive enzymes to initiate degradative processes early in germination.  相似文献   

17.
V. R. Franceschi 《Protoplasma》1984,120(3):216-223
Summary Sugar beet (Beta vulgaris L.) leaf has a layer of cells extended laterally between the palisade parenchyma and spongy mesophyll that develop numerous small crystals (crystal sand) within their vacuoles. Solubility studies and histochemical staining indicate the crystals are calcium oxalate. The crystals are deposited within the vacuoles early during leaf development, and at maturity the cells are roughly spherical in shape and 2 to 3 times larger than other mesophyll cells. Crystal deposition is preceeded by formation of membrane vesicles within the vacuole. The membranes are synthesizedde novo in the vacuole and have a typical trilaminate structure as viewed with the TEM. The membranes are formed within paracrystalline aggregates of tubular particles (6–8nm outer diameter) as membrane sheets, but are later organized into chambers or vesicles. Calcium oxalate is then precipitated within the membrane chambers. The tubular particles involved in membrane synthesis are usually present in the vacuoles of mature crystal cells, but in very small amounts.  相似文献   

18.
Plant vacuoles are multi-functional, developmentally varied and can occupy up to 90% of plant cells. The N-terminal propeptide (NTPP) of sweet potato sporamin and the C-terminal propeptide (CTPP) of tobacco chitinase have been developed as models to target some heterologous proteins to vacuoles but so far tested on only a few plant species, vacuole types and payload proteins. Most studies have focused on lytic and protein-storage vacuoles, which may differ substantially from the sugar-storage vacuoles in crops like sugarcane. Our results extend the evidence that NTPP of sporamin can direct heterologous proteins to vacuoles in diverse plant species and indicate that sugarcane sucrose-storage vacuoles (like the lytic vacuoles in other plant species) are hostile to heterologous proteins. A low level of cytosolic NTPP-GFP (green fluorescent protein) was detectable in most cell types in sugarcane and Arabidopsis, but only Arabidopsis mature leaf mesophyll cells accumulated NTPP-GFP to detectable levels in vacuoles. Unexpectedly, efficient developmental mis-trafficking of NTPP-GFP to chloroplasts was found in young leaf mesophyll cells of both species. Vacuolar targeting by tobacco chitinase CTPP was inefficient in sugarcane, leaving substantial cytoplasmic activity of rat lysosomal -glucuronidase (GUS) [ER (endoplasmic reticulum)-RGUS-CTPP]. Sporamin NTPP is a promising targeting signal for studies of vacuolar function and for metabolic engineering. Such applications must take account of the efficient developmental mis-targeting by the signal and the instability of most introduced proteins, even in storage vacuoles.  相似文献   

19.
Salt Tolerance and Crop Potential of Halophytes   总被引:3,自引:0,他引:3  
Although they represent only 2% of terrestrial plant species, halophytes are present in about half the higher plant families and represent a wide diversity of plant forms. Despite their polyphyletic origins, halophytes appear to have evolved the same basic method of osmotic adjustment: accumulation of inorganic salts, mainly NaCl, in the vacuole and accumulation of organic solutes in the cytoplasm. Differences between halophyte and gly-cophyte ion transport systems are becoming apparent. The pathways by which Na+ and Cl? enters halophyte cells are not well understood but may involve ion channels and pinocytosis, in addition to Na+ and Cl? transporters. Na+ uptake into vacuoles requires Na+/H+ antiporters in the tonoplast and H+ ATPases and perhaps PPi ases to provide the proton motive force. Tonoplast antiporters are constitutive in halophytes, whereas they must be activated by NaCl in salt-tolerant glycophytes, and they may be absent from salt-sensitive glycophytes. Halophyte vacuoles may have a modified lipid composition to prevent leakage of Na+ back to the cytoplasm. Becuase of their diversity, halophytes have been regarded as a rich source of potential new crops. Halophytes have been tested as vegetable, forage, and oilseed crops in agronomic field trials. The most productive species yield 10 to 20 ton/ha of biomass on seawater irrigation, equivalent to conventional crops. The oilseed halophyte, Sali-cornia bigelovii, yields 2?t/ha of seed containing 28% oil and 31% protein, similar to soybean yield and seed quality. Halophytes grown on seawater require a leaching fraction to control soil salts, but at lower salinities they outperform conventional crops in yield and water use efficiency. Halophyte forage and seed products can replace conventional ingredients in animal feeding systems, with some restrictions on their use due to high salt content and antinutritional compounds present in some species. Halophytes have applications in recycling saline agricultural wastewater and reclaiming salt-affected soil in arid-zone irrigation districts.  相似文献   

20.
The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd2+ transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1pK669M) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号