首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have developed a technique for isolating apoprotein C-III by immunoaffinity chromatography, allowing the measurement of its specific radioactivity in lipoprotein fractions from small plasma samples. IgG specific for apoC-III was purified from goat antisera and bound to Sepharose. One ml of this gel (5 mg of IgG) bound 80-90 micrograms of apoC-III. The specific activity of apoC-III was determined by application of delipidated very low density lipoproteins to 1-ml columns and analysis of the protein eluted at pH 2.5 for mass and radio-activity. The coefficient fo variation for apoC-III specific activity determination from 125I-labeled VLDL was 4.3%. Minimal contamination of the eluates by apoproteins B, E, and C-II was confirmed by radioimmunoassay (0.3-1.2%). Following the injection of autologous 125I-labeled VLDL, specific activity decay curves for VLDL apoC-III were biexponential, with the clearance of apoC-III being slower in hypertriglyceridemic subjects. These affinity columns can be used repeatedly and yield reproducible results. This technique should be useful for simultaneous studies of the turnover of several apoproteins in the same individual following a single injection of labeled autologous lipoprotein.  相似文献   

2.
Six mouse monoclonal antibodies against rabbit apolipoprotein E (apo E) have been developed. Of these monoclonal antibodies, clone 5 revealed a high affinity for purified apo E, very low density lipoprotein (VLDL) and beta-VLDL. This monoclonal antibody was used to prepare an immunoaffinity column. Coupled to Sepharose 4B, this antibody allowed complete removal of lipoproteins containing apo E from plasma of New Zealand white (NZW) rabbits; 62, 46, 14, and 3% of VLDL-, IDL-, LDL-, and HDL-protein, respectively, were bound to the anti-apo E affinity column. The bound VLDL was significantly rich in free cholesterol (FC) and cholesteryl esters (CE) relative to the unbound VLDL, whereas bound IDL, LDL and HDL were significantly rich in FC only. All of the bound fractions were characterized by significantly increased ratios of FC/phospholipids (PL). These results indicate that the two lipoprotein populations with and without apo E have different lipid compositions. The relatively high content of cholesterol in lipoproteins containing apo E suggests a contribution of apo E to plasma cholesterol transport.  相似文献   

3.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

4.
The capacity of human plasma triacylglycerol-rich lipoproteins to be metabolized by rat macrophages was studied with plasma triacylglycerol-rich lipoproteins obtained from subjects with fasting chylomicronemia or from normal subjects after a fat meal. Triacylglycerol-rich lipoproteins were separated by chromatography into two fractions designated TRL1 and TRL2; from their composition and changing concentration during alimentary lipemia, TRL1 contained a higher proportion of chylomicron remnants than TRL2. Degradation of 125I-labeled TRL1 was greater than that of 125I-labeled TRL2. In competition studies with 125I-labeled beta-VLDL from cholesterol-fed rabbits, unlabeled TRL1 displaced beta-VLDL as completely as did unlabeled beta-VLDL, being slightly more potent than TRL2, which contained less apolipoprotein E than TRL1. This reflected common interaction at receptors that probably included both beta-VLDL and B/E receptors, since: (1) in fresh macrophages, VLDL from hypertriglyceridemic subjects partially displaced beta-VLDL; (2) in B/E receptor-repressed macrophages, TRL1 maintained capacity to totally displace beta-VLDL. This was confirmed in experiments with J774 murine macrophages in which triacylglycerol-rich lipoproteins and beta-VLDL displaced each other equally, whereas LDL was ineffective in displacing beta-VLDL. Furthermore, monoclonal antibodies raised against apolipoprotein B48 and reacting strongly with LDL, failed to inhibit the binding of triacylglycerol-rich lipoprotein to the macrophages. This indicates an interaction through apolipoprotein E which is present in high concentration in triacylglycerol-rich lipoprotein as well as in beta-VLDL. It applies to triacylglycerol-rich particles derived from either the intestine (chylomicron remnants) or the liver (VLDL remnants from hypertriglyceridemic subjects).  相似文献   

5.
A double antibody radioimmunoassay technique was developed for the measurement of apolipoprotein A-I, the major apoprotein of human high density lipoproteins. Apolipoprotein A-I was prepared from human delipidated high density lipoprotein (d equal to 1.085-1.210) by gel filtration and ion-exchange chromatography. Purified apolipoprotein A-I antibodies were obtained by means of apolipoprotein A-I immunoadsorbent. Apolipoprotein A-I was radiolabeled with 125-I by the iodine monochloride technique. 65-80% of 125 I-labeled apolipoprotein A-I could be bound by the different apolipoprotein A-I antibodies, and more than 95% of the 125-I-labeled apolipoprotein A-I was displaced by unlabeled apolipoprotein A-I. The immunoassay was found to be sensitive for the detection of about 10 ng of apolipoprotein A-I in the incubation mixture, and accurate with a variability of only 3-5% (S.E.M.). This technique enables the quantitation of apolipoprotein A-I in whole plasma or high density lipoprotein without the need of delipidation. The quantitation of apolipoprotein A-I in high density lipoprotein was found similar to that obtained by gel filtration technique. The displacement capacity of the different lipoproteins and apoproteins in comparison to unlabeled apolipoprotein A-I was: very low density lipoprotein, 1.8%; low density lipoprotein, 2.6%; high density lipoprotein, 68%; apolipoprotein B, non-detectable; apolipoprotein C, 0.5%; and apolipoprotein A-II, 4%. The distribution of immunoassayable apolipoprotein A-I among the different plasma lipoproteins was as follows: smaller than 1% in very low density lipoprotein and low density lipoprotein; 50% in high density lipoprotein, and 50% in lipoprotein fraction of density greater than 1.21 g/ml. The amount of apolipoprotein A-I in the latter fraction was found to be related to the number of centrifugations.  相似文献   

6.
Using immunoaffinity chromatography to isolate apoC-III from radiolabeled lipoproteins for direct determination of specific radioactivity, we have studied the metabolism of human apoC-III in VLDL and in HDL following the bolus injection of 125I-labeled VLDL. Transfer of apoC-III radioactivity from VLDL to HDL was detected in the plasma sample drawn 5 min after injection of the tracer. However, the specific radioactivity of apoC-III in VLDL was found to be higher than that in HDL, with this difference being maintained throughout the sampling period (48-72 hr). The ratios of the respective specific activities ranged from 1.2 to 1.9 in six subjects studied (two normolipidemics and four hypertriglyceridemics). When 125I-labeled HDL was injected as the tracer, however, the higher apoC-III specific radioactivity was associated with the HDL fraction. This lack of complete equilibration of apoC-III between VLDL and HDL in vivo was further characterized by in vitro studies using either 125I-labeled VLDL or 125I-labeled HDL. All incubations were carried out for 3 hr at 37 degrees C followed by 16 hr at 4 degrees C and the apoC-III specific activity in each lipoprotein fraction was directly determined after immunoaffinity chromatography. In a study of plasma from a mildly hypertriglyceridemic subject in which 125I-labeled VLDL was incubated with unlabeled HDL, apoC-III specific activities in VLDL remained 30% greater than that in HDL. When 125I-labeled HDL (from the same subject) was incubated with unlabeled VLDL of apoC-III, final specific activity in VLDL was less than 10% of that of HDL apoC-III. Differences in specific activities were also demonstrated when radiolabeled purified apoC-III was exchanged onto VLDL prior to its incubation with HDL. A consistent difference in apoC-III specific activities in VLDL and HDL was observed after isolation of the particles either by molecular sieve chromatography or by ultracentrifugation. These studies demonstrated that, while the exchange of apoC-III between VLDL and HDL may be very rapid, this equilibration is not complete. Pools of apoC-III that do not participate in the equilibration process are present in both the VLDL and HDL fractions and could account for 30-60% of the total apoC-III mass in each lipoprotein fraction.  相似文献   

7.
The conformations of apolipoproteins on the surfaces of lipoprotein particles affect their physiologic functions. The conformations of apoE on plasma lipoproteins were examined using a panel of eight anti-apoE monoclonal antibodies (MAbs). The antibodies, which reacted with the major isoforms of apoE (E2, E3, and E4), defined at least five epitopes on apoE. Proteolytic fragments and synthetic peptides of apoE were used in binding assays to assign antibody epitopes; the epitopes were all localized to the middle third of the apoE molecule. The expression of apoE epitopes on isolated apoE and on lipoproteins was probed in competitive microtiter plate immunoassays using the anti-apoE MAbs, 125I-labeled apoE as tracer, and isolated apoE, intermediate density (IDL), very low density (VLDL1-3), and high density (HDL2 and HDL3) lipoproteins as competitors. The antibodies determined the patterns of competition exhibited by the lipoprotein preparations. Antibodies of the IgM class (WU E-1, WU E-2, WU E-3) defined two sets of conformation-dependent epitopes that were assigned towards the middle and the carboxyl terminal of the middle third of apoE. Competition curves using these antibodies, apoE, and lipoproteins showed a large variability in ED50 values. MAbs WU E-4, WU E-7, and WU E-10 defined epitopes near the receptor recognition site on apoE. Competition curves demonstrated small ranges of ED50 values. MAbs WU E-11 and WU E-12, which defined epitopes toward the amino-terminal region of apoE, exhibited competition curves for apoE and lipoproteins that had consistent, but wider ranges of ED50 values. There was no strict relationship between lipoprotein flotation rates and epitope expression for any of the MAbs. Immunoaffinity chromatography of VLDL subfractions on four different MAb columns indicated that the differences in the competitive abilities of VLDL subfractions were partly due to heterogeneity of apoE epitope expression within any population of particles. VLDL particles specifically retained on two different anti-apoE MAb columns were better competitors than unretained fractions for 125I-labeled LDL binding to the apoB, E-receptor of cultured human fibroblasts, suggesting that increased accessibility of apoE on the surface of VLDL is associated with increased receptor recognition. These data suggest that individual epitopes of apoE can be modulated; epitope expressions are not determined solely by the sizes and/or densities of lipoprotein particles; and differences in apoE conformation have significant metabolic consequences.  相似文献   

8.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

9.
High density lipoprotein (HDL) was isolated from hog plasma by a simple immunoaffinity column chromatography procedure using immobilized anti-apolipoprotein AI. The composition of HDL isolated by immunoaffinity chromatography was nearly identical to that of a control sample that was isolated by an alternate method utilizing ultracentrifugation and gel chromatography. The HDL isolated by immunoaffinity chromatography had a larger number of polypeptide components that the control as indicated by acrylamide gel electrophoresis in the presence of urea. When the HDL isolated by immunoaffinity chromatography was applied to a heparin-agarose column the amount of protein retained was approximately twice that of the control. These findings indicate that the ultracentrifugation procedure probably induced the loss of apolipoprotein E containing components from the HDL complex.  相似文献   

10.
In this study we have investigated the effects of very low density lipoprotein (VLDL) lipolysis on the removal of radiolabeled apolipoprotein C-II and apolipoprotein C-III-1 from in vitro lipolyzed lipoproteins. Lipolysis was carried out in vitro using lipoprotein lipase purified from bovine milk, and mixtures with or without plasma. Lipoproteins were isolated by ultracentrifugation and by gel filtration. Labeled apo-C-II and apo-C-III-1 distributed among plasma lipoproteins, predominantly VLDL and high density lipoprotein (HDL). Lipolysis induced transfer of apo-C-II and apo-C-III-1 from VLDL to HDL. The transfer was proportional to the extent of triglyceride hydrolysis, and similar for the two apoproteins. The apo-C-II/apo-C-III-1 radioactivity ratio did not change in either VLDL or the fraction of d greater than 1.006 g/ml during the progression of the lipolytic process. Similar observations were recorded while using plasma-devoid lipolytic systems. Gel filtration of incubation mixtures, on 6% agarose, revealed that the removal of labeled apo-C molecules from VLDL is not a consequence of either centrifugation or high salt concentration. These results suggest that there is no preferential removal of apo-C-II or apo-C-III-1 from lipolyzed VLDL particles. They further indicate that the ratio of apo-C-II to apo-C-III-1 does not regulate the extent of lipolysis of different VLDL particles, at least in VLDL isolated from normolipidemic humans.  相似文献   

11.
Radioligand and immunoenzymatic techniques were used to characterize the receptor binding properties of apolipoprotein B-containing lipoprotein produced by HepG2 cell line (H-LpB). It was found that compared to plasma low-density lipoprotein (LDL), the interaction of H-LpB nonseparated from conditioned medium with normal fibroblasts was 6-8-times lower and only slightly exceeded the nonspecific binding of LDL modified by malondialdehyde, while the uptake of the indicated lipoproteins by LDL receptor-negative strain of fibroblasts were identical. The uptake of H-LpB by normal fibroblasts increased 1.5-2-times after isolation from the culture medium by immunoaffinity chromatography. The effect of isolation could be explained by the finding that apolipoprotein E-containing lipoprotein secreted by HepG2 cells effectively competed for the binding with LDL-receptors. The obtained results suggest that H-LpB produced by HepG2 cells is poorly recognized by the LDL-receptors.  相似文献   

12.
A monoclonal antibody to apolipoprotein (apo) B-100 (JI-H) with unique binding properties has been used to separate a population of triglyceride-rich lipoproteins from blood plasma of normotriglyceridemic individuals and patients with various forms of hypertriglyceridemia. This antibody fails to recognize an apoE-rich population of very low density lipoproteins (VLDL) containing apoB-100 as well as all triglyceride-rich lipoproteins containing apoB-48, but it binds other VLDL that contain apoE and almost all lipoproteins that contain apoB-100, but no apoE. The unbound triglyceride-rich lipoproteins separated by ultracentrifugation after separation from plasma by immunoaffinity chromatography contained 10-13% of the apoB of triglyceride-rich lipoproteins from three normotriglyceridemic individuals, 10-29% of that from five patients with endogenous hypertriglyceridemia, 40-48% of that from three patients with familial dysbetablipoproteinemia, and 65% of that from a patient with lipoprotein lipase deficiency. In all cases, the unbound triglyceride-rich lipoproteins contained more molecules of apoE and cholesteryl esters per particle than those that were bound to monoclonal antibody JI-H, and they were generally depleted of C apolipoproteins. These properties resemble those described for partially catabolized remnants of chylomicrons and VLDL. The affinity of the unbound lipoproteins for the low density lipoprotein (LDL) receptor varied widely, and closely resembled that of the total triglyceride-rich lipoproteins from individual subjects. Our results demonstrate that remnant-like chylomicrons and a population of remnant-like VLDL can be isolated and quantified in blood plasma obtained in the postabsorptive state from normotriglyceridemic and hypertriglyceridemic individuals alike.  相似文献   

13.
Radiolabeling of whole lipoproteins or individual apolipoproteins has been an essential tool for the determination of the kinetics of apolipoprotein metabolism in vivo. Mathematical analysis of specific radioactivity (SA) or total radioactivity data has demonstrated the existence of significant complexity in the plasma decay curves of several apolipoproteins. Results obtained during development of methods to study the metabolism of apolipoprotein B (apoB) in very low density lipoprotein (VLDL) subclasses isolated according to flotation (Sf) rates from whole radiolabeled (d less than 1.006 g/ml) VLDL suggested nonuniform radiolabeling of apoB in the three Sf subclasses being studied. We therefore determined apoB SA in VLDL Sf subclasses in ten hypertriglyceridemic and five normal subjects. After radioiodination of apoB in whole VLDL, different apoB SA were found in Sf 400-100, Sf 100-60, and Sf 60-20. The pattern of labeling was quite variable among subjects. On average, apoB SA in the VLDL tracer was greatest in Sf 400-100, and least in Sf 60-20. Nonuniform labeling could also be demonstrated in five studies in which samples were obtained 3 min after intravenous injection of the tracer into subjects with a wide range of plasma triglycerides. Nonuniform labeling of apoB in whole VLDL was also demonstrated in two of the subjects by isolating subclasses of their VLDL that did not bind to an anti-apolipoprotein E immunoaffinity column. These results indicate that the usual assumption of homogeneous labeling of apoB may be erroneous. We have derived a simple mathematical formula to study the consequences of this assumption in estimating kinetic parameters. It is shown that an erroneous assumption of homogeneous tracer labeling may significantly underestimate or overestimate the true production rate, even in a simple two-pool model. Identification of labeling characteristics and incorporation of this information into the mathematical analysis of the plasma radioactivity data can improve the accuracy of the analysis as well as the sensitivity of compartmental models generated by such data.  相似文献   

14.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

15.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

16.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

17.
The protein heterogeneity of fractions isolated by immunoaffinity chromatography on anti-apolipoprotein A-I and anti-apolipoprotein A-II affinity columns was analyzed by high resolution two-dimensional gel electrophoresis. The two-dimensional gel electrophoresis profiles of the fractions were analyzed and automatically compared by the computer system MELANIE. Fractions containing apolipoproteins A-I + A-II and only A-I as the major protein components have been isolated from plasma and from high density lipoproteins prepared by ultracentrifugation. Similarities between the profiles of the fractions, as indicated by two-dimensional gel electrophoresis, suggested that those derived from plasma were equivalent to those from high density lipoproteins (HDL), which are particulate in nature. The established apolipoproteins (A-I, A-II, A-IV, C, D, and E) were visible and enriched in fractions from both plasma and HDL. However, plasma-derived fractions showed a much greater degree of protein heterogeneity due largely to enrichment in bands corresponding to six additional proteins. They were present in trace amounts in fractions isolated from HDL and certain of the proteins were visible in two-dimensional gel electrophoresis profiles of the plasma. These proteins are considered to be specifically associated with the immunoaffinity-isolated particles. They have been characterized in terms of Mr and pI. Computer-assisted measurements of protein spot-staining intensities suggest an asymmetric distribution of the proteins (as well as the established apolipoproteins), with four showing greater prominence in particles containing apolipoprotein A-I but no apolipoprotein A-II.  相似文献   

18.
Cysteine-arginine interchanges along the primary sequence of human plasma apolipoprotein E (apoE) play an important role in determining its biological functions due to a high mutation frequency of cytosine in CGX triplet that codes 33 of 34 apolipoprotein arginine residues. The contribution of apoE secondary structure to apolipoprotein-lipid interaction is described. The significance of apolipoprotein in triglyceride synthesis, lipoprotein lipolysis, and receptor-mediated clearance of lipolytic remnants of triglyceride-rich lipoproteins is discussed as well. The metabolic flow of lipoproteins in normo- and hypertriglyceridemia can be described by separate compartments that contribute to lipoprotein interaction with at least six different receptors: 1) low density lipoprotein (LDL) receptor; 2) LDL receptor-related protein (LRP); 3) apoB(48) macrophage receptor for hypertriglyceridemic very low density lipoproteins (VLDL); 4) scavenger receptors; 5) VLDL receptor; 6) lipolysis-stimulated receptor. The contribution of the exposure of apoE molecules on the surface of triglyceride-rich particles sensitive both to lipolysis and plasma triglyceride content to the interaction with LDL receptor and LRP is emphasized.  相似文献   

19.
A method is described for the separation of the three major classes of human serum lipoproteins by gel filtration on columns of 4 and 6% agarose gel. After calibration of the columns, the elution volumes of the lipoproteins were used to calculate the molecular sizes and molecular weights of these macromolecules. The technique was employed to demonstrate aggregation of low density lipoprotein following partial delipidation, partial proteolysis, or mild heat denaturation. Agarose gel filtration shows promise as a useful method for the isolation, purification, and characterization of lipoproteins.  相似文献   

20.
Freshly isolated rat hepatocytes bind the solely apolipoprotein B-containing human low density lipoprotein (LDL) with a high-affinity component. After 1 h of incubation less than 30% of the cell-associated human LDL is internalized and no evidence for any subsequent high-affinity degradation was obtained. Scatchard analysis of the binding data for human 125I-labeled LDL indicates that the high-affinity receptor for human LDL on rat hepatocytes possesses a Kd of 2.6 x 10(-8)M, while the binding is dependent on the extracellular Ca2+ concentration. Competition experiments indicate that both the apolipoprotein B-containing lipoproteins (human LDL and rat LDL) as well as the apolipoprotein E-containing lipoproteins (human HDL and rat HDL) do compete for the same surface receptor. It is concluded that hepatocytes freshly isolated from untreated rats do contain, in addition to the earlier described rat lipoprotein receptor which does not interact with human apolipoprotein B-containing LDL, a high-affinity receptor which interacts both with solely apolipoprotein B-containing human LDL and apolipoprotein E-containing lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号