首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key feature of antibodies is their ability to bind antigens with high specificity and affinity. This has led to the concept of intracellular antibodies (intrabodies), designed to mimic antibody-antigen binding, but inside cells. Antibody fragments comprising the antigen-binding variable domains are convenient formats for intrabodies, potentially allowing for intracellular functionality. Intrabodies are promising tools, capable of interfering with a wide range of molecular targets in various intracellular compartments. However, many significant challenges remain to be overcome before intrabodies can be useful therapeutic agents. Although major progress has been made in the design and selection of intrabodies, new developments and advances are needed to allow their efficient delivery and expression for treatment of human diseases.  相似文献   

2.
Within the biomedical and pharmaceutical communities there is an ongoing need to find new technologies that can be used to elucidate disease mechanisms and provide novel therapeutics. Antibodies are arguably the most powerful tools in biomedical research, and antibodies specific for extracellular or cell-surface targets are currently the fastest growing class of new therapeutic molecules. However, the majority of potential therapeutic targets are intracellular, and antibodies cannot readily be leveraged against such molecules, in the context of a viable cell or organism, because of the inability of most antibodies to form stable structures in an intracellular environment. Advances in recent years, in particular the development of intracellular screening protocols and the definition of antibody structures that retain their antigen-binding function in an intracellular context, have allowed the robust isolation of a subset of antibodies that can function in an intracellular environment. These antibodies, generally referred to as intrabodies, have immense potential in the process of drug development and may ultimately become therapeutic entities in their own right.  相似文献   

3.
A growing number of research consortia are now focused on generating antibodies and recombinant antibody fragments that target the human proteome. A particularly valuable application for these binding molecules would be their use inside a living cell, e.g., for imaging or functional intervention. Animal-derived antibodies must be brought into the cell through the membrane, whereas the availability of the antibody genes from phage display systems allows intracellular expression. Here, the various technologies to target intracellular proteins with antibodies are reviewed.Key words: protein transfection, profection, cytosolic delivery, intracellular delivery, protein transduction domains, cell penetrating peptides, intracellular antibody, intrabodies, transbodies, live cell imaging  相似文献   

4.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

5.
Intracellular antibodies (intrabodies) constitute a potent tool to neutralize the function of target proteins inside specific cell compartments (cytosol, nucleus, mitochondria and ER). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals and complements or replaces knockdown techniques such as antisense-RNA, RNAi and RNA aptamers. This article focuses on intrabodies targeted to the ER. Intracellular anti-bodies expressed and retained inside the ER (ER intrabodies) are shown to be highly efficient in blocking the translocation of secreted and cell surface molecules from the ER to the cell surface.The advantage of ER intrabodies over cytoplasmic intrabodies is that they are correctly folded and easier to select. A particular advantage of the intrabody technology over existing ones is the possibility of inhibiting selectively post-translational modifications of proteins.The main applications of ER intrabodies so far have been (i) inactivation of oncogenic receptors and (ii) functional inhibition of virus envelope proteins and virus-receptor molecules on the surface of host cells.In cancer research, the number of in vivo mouse models for evaluation of the therapeutic potential of intrabodies is increasing.In the future, endosomal localized receptors involved in bacterial and viral infections, intracellular oncogenic receptors and enzymes involved in glycosylation of tumour antigens might be new targets for ER intrabodies.  相似文献   

6.
In the past decade, a large number of intracellular antibodies (intrabodies) have been developed for potential use as therapeutic agents. As antibodies can be generated against virtually any target antigen, the applications of intrabodies span a wide range including tumour therapy, infectious diseases, transplantation, and other diseases associated with protein overexpression or mutagenesis. This article summarises the development of intrabodies and their applications as therapeutic agents.  相似文献   

7.
Single-chain Fv antibody fragments (scFv) represent a convenient antibody format for intracellular expression in eukaryotic or prokaryotic cells. These so-called intrabodies have great potential in functional genomics as a tool to study the function of newly identified proteins in vivo, for example by binding-induced modulation of their activity or by blocking interactions with other proteins. However, the intracellular expression and activity of many single-chain Fvs are limited by their instability and folding efficiency in the reducing intracellular environment, where the highly conserved intrachain disulfide bonds do not form. In the present work, we used an in vivo selection system to isolate novel antigen-binding intrabodies. We screened two intrabody libraries carrying a randomized third hypervariable loop onto the heavy chain of a stable framework, which had been further optimized by random mutagenesis for better behavior in the selection system, and we biophysically characterized the selected variants to interpret the outcome of the selection. Our results show that single-framework intrabody libraries can be directly screened in vivo to rapidly select antigen-specific intrabodies.  相似文献   

8.
Antigen-independent selection of intracellular stable antibody frameworks   总被引:1,自引:0,他引:1  
The intracellular expression of highly specific antibody fragments ("intrabodies") in eukaryotes has a great potential in functional genomics and therapeutics. However, since the intracellular reducing environment prevents formation of the conserved intrachain disulfide bonds, most antibodies do not fold properly and are therefore inactive inside cells. The few antibodies that have been found to function in an intracellular environment and that have been characterized for their biophysical properties have generally shown a high degree of stability and solubility. Thus, for intracellular expression and application, very stable antibody frameworks are needed that can correctly fold even in the absence of disulfide bonds and that do not aggregate. Here, we present and discuss a novel method, named "Quality Control," which allows selection of stable and soluble antibody frameworks in vivo without the requirement or knowledge of antigens. This system is based on the expression of single-chain antibody fragments (scFvs) fused to a selectable marker that can control gene expression and cell growth. The activity of such a selectable marker fused to various scFvs that have been biophysically characterized correlated with the solubility and stability of the scFv moieties. This antigen-independent intrabody selection system was applied to screen scFv libraries for identifying stable and soluble frameworks, which subsequently served as acceptor backbones to construct intrabody libraries by randomization of hypervariable loops.  相似文献   

9.
Although intracellular antibodies (intrabodies) are being explored as putative therapeutic and research reagents, little is known about the principles that dictate the efficacy of these molecules. In our efforts to address this issue, we generated a panel of five intrabodies, directed against catalytically inactive murine caspase-3, by screening single-chain antibody (Fv) phage display libraries. Here we determined criteria that single-chain Fv fragments must fulfill to act as efficient intrabodies. The affinities of these intrabodies, as measured by surface plasmon resonance, varied approximately 5-fold (50-250 nm). Despite their substantial sequence similarity, only two of the five intrabodies were able to significantly accumulate intracellularly. These disparities in intracellular expression levels were reflected by differences in the stability of the purified protein species when analyzed by urea denaturation studies. We observed varied efficiencies in retargeting the antigen murine caspase-3, from the cytosol to the nucleus, mediated by intrabodies tagged with an SV40 nuclear localization signal. Our results demonstrate that the intrinsic stability of the intrabody, rather than its affinity for the antigen, dictates its intracellular efficacy.  相似文献   

10.
There is a major need in target validation and therapeutic applications for molecules that can interfere with protein function inside cells. Intracellular antibodies (intrabodies) can bind to specific targets in cells but isolation of intrabodies is currently difficult. Intrabodies are normally single chain Fv fragments comprising variable domains of the immunoglobulin heavy (VH) and light chains (VL). We now demonstrate that single VH domains have excellent intracellular properties of solubility, stability and expression within the cells of higher organisms and can exhibit specific antigen recognition in vivo. We have used this intracellular single variable domain (IDab) format, based on a previously characterised intrabody consensus scaffold, to generate diverse intrabody libraries for direct in vivo screening. IDabs were isolated using two distinct antigens and affinities of isolated IDabs ranged between 20 nM and 200 nM. Moreover, IDabs selected for binding to the RAS protein could inhibit RAS-dependent oncogenic transformation of NIH3T3 cells. The IDab format is therefore ideal for in vivo intrabody use. This approach to intrabodies obviates the need for phage antibody libraries, avoids the requirement for production of antigen in vitro and allows for direct selection of intrabodies in vivo.  相似文献   

11.
Many therapeutic targets are intracellular proteins and molecules designed to interact with them must effectively bind to their target inside the cell. Intracellular antibodies (intrabodies) recognise and bind to proteins in cells and various methods have been developed to produce such molecules. Intracellular antibody capture (IAC) is based on a genetic screening approach and is a facile methodology with which effective intracellular antibodies can be obtained. During the development of the IAC technology, consensus immunoglobulin variable frameworks were identified which can form the basis of intrabody libraries for direct screening. In this paper, we describe the de novo synthesis of intrabody libraries based on the IAC consensus sequence. The procedure comprises in vitro production of a single antibody gene fragment from oligonucleotides and diversification of CDRs of the immunoglobulin variable domain by mutagenic PCR. Completely de novo intrabody libraries can be rapidly generated in vitro by these approaches. As an example, a single immunoglobulin VH domain intrabody library was screened directly in yeast with an oncogenic BCR-ABL antigen bait and distinct antigen binders were isolated illustrating the functional utility of the library. This second generation IAC approach (IAC2) has many practical advantages, in particular the ability to isolate intrabodies by direct genetic selection, which obviates the need for in vitro production of antigen for pre-selection of antibody fragments.  相似文献   

12.
《MABS-AUSTIN》2013,5(6):1010-1035
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.  相似文献   

13.
Intrabodies are recombinantly expressed intracellular antibody fragments that can be used to specifically bind and inhibit the function of cellular proteins of interest. Intrabodies can be targeted to various cell compartments by attaching an appropriate localization peptide sequence to them. An efficient strategy with a high success rate is to anchor intrabodies in the endoplasmatic reticulum where they can inhibit transitory target proteins by binding and preventing them to reach their site of action. Intrabodies can be assembled from antibody gene fragments from various sources into dedicated expression vectors. Conventionally, antibody cDNA sequences are derived from selected hybridoma cell clones that express antibodies with the desired specificity. Alternatively, appropriate clones can be isolated by affinity selection from an antibody in vitro display library. Here an evaluation of endoplasmatic reticulum targeted intrabodies with respect to other knockdown approaches is given and the characteristics of various intrabody expression vectors are discussed. A step by step protocol is provided that was repeatedly used to construct intrabodies derived from diverse antibody isotypes producing hybridoma cell clones. The inactivation of the cell surface receptor neural cell adhesion molecule (NCAM) by a highly efficacious novel endoplasmatic reticulum-anchored intrabody is demonstrated.  相似文献   

14.
Intracellular antibodies (intrabodies) provide an attractive means for manipulating intracellular protein function, both for research and potentially for therapy. A challenge in the isolation of effective intrabodies is the ability to find molecules that exhibit sufficient binding affinity and stability when expressed in the reducing environment of the cytoplasm. Here, we have used yeast surface display of proteins to isolate novel scFv clones against huntingtin from a non-immune human antibody library. We then applied yeast surface display to affinity mature this scFv pool and analyze the location of the binding site of the mutant with the highest affinity. Interestingly, the paratope was mapped exclusively to the variable light chain domain of the scFv. A single domain antibody was constructed consisting solely of this variable light chain domain, and was found to retain full binding activity to huntingtin. Cytoplasmic expression levels in yeast of the single domain were at least fivefold higher than the scFv. The ability of the single-domain intrabody to inhibit huntingtin aggregation, which has been implicated in the pathogenesis of Huntington's disease (HD), was confirmed in a cell-free in vitro assay as well as in a mammalian cell culture model of HD. Significantly, a single-domain intrabody that is functionally expressable in the cytoplasm was derived from a non-functional scFv by performing affinity maturation and binding site analysis on the yeast cell surface, despite the differences between the cytoplasmic and extracellular environment. This approach may find application in the development of intrabodies to a wide variety of intracellular targets.  相似文献   

15.
Since the realisation that the antigen‐binding regions of antibodies, the variable (V) regions, can be uncoupled from the rest of the molecule to create fragments that recognise and abrogate particular protein functions in cells, the use of antibody fragments inside cells has become an important tool in bioscience. Diverse libraries of antibody fragments plus in vivo screening can be used to isolate single chain variable fragments comprising VH and VL segments or single V‐region domains. Some of these are interfering antibody fragments that compete with protein‐protein interactions, providing lead molecules for drug interactions that until now have been considered difficult or undruggable. It may be possible to deliver or express antibody fragments in target cells as macrodrugs per se. In future incarnations of intracellular antibodies, however, the structural information of the interaction interface of target and antibody fragment should facilitate development of binding site mimics as small drug‐like molecules. This is a new dawn for intracellular antibody fragments both as macrodrugs and as precursors of drugs to treat human diseases and should finally lead to the removal of the epithet of the ‘undruggable’ protein‐protein interactions.  相似文献   

16.
The ability of intracellular antibodies (intrabodies) to block the function of a target protein can be dependent on the stability of the single-chain antibody (sFv) when expressed in the intracellular environment. Low-affinity sFvs capable of reaching high steady-state levels can be more effective modulators of target proteins than high-affinity, unstable sFvs. In an effort to enhance the intracellular stability of sFvs when expressed as intrabodies, we have generated novel sFv-Fc fusion intrabodies. Fusion of the native sFv sequence with the entire heavy chain constant region fragment of IgG results in decreased turnover of the intrabody and enhanced steady-state accumulation of sFv-Fc protein, while maintaining the ability to target intrabody expression to sub-cellular compartments. Here, we describe the rationale and design for this strategy using two anti-cyclin E sFvs constructed for use as intrabodies.  相似文献   

17.
We have applied in vivo intracellular antibody capture (IAC) technology to isolate human intrabodies which bind to the oncogenic RAS protein. IAC facilitates the capture of antibody fragments, in this case single-chain Fvs (scFvs), which tolerate reducing environments, such as the cytoplasm of cancer cells. Three anti-RAS scFvs with different affinity, solubility and intracellular binding activity were characterized. The anti-RAS scFvs with highest affinity were expressed relatively poorly in mammalian cells, and greater soluble expression was achieved by mutating the antibody framework to canonical consensus scaffolds, previously derived from IAC, without losing antigen specificity. Mutagenesis experiments showed that the consensus scaffolds are functional as intrabody fragments without an intra-domain disulfide bond. Furthermore, we could convert an intrabody which does not bind RAS in mammalian cells into a high-affinity reagent capable of inhibiting RAS-mediated NIH 3T3 transformation by exchanging VH and VL complementarity-determining regions onto its consensus scaffold. These data show that the consensus scaffold is a robust framework by which to improve intrabody function.  相似文献   

18.
The expression of antibodies inside cells to ablate protein function has the potential for disease therapy and for target validation in functional genomics. However, due to inefficient expression or folding, only a few antibodies or antibody fragments, usually as single-chain Fv antibody fragments (scFv), bind their antigens in an intracellular environment. We have established a genetic-selection technology (intracellular antibody capture, IAC) to facilitate the isolation of functional intracellular scFv from a diverse repertoire. This approach comprises an in vitro library screen with scFv-expressing bacteriophage, employing bacterially expressed antigen, followed by a yeast in vivo antibody-antigen interaction screen of the sub-library of in vitro scFv antigen-binders. Accordingly, we have isolated panels of scFv that bind intracellularly to the BCR or the ABL parts of the BCR-ABL oncogenic protein. Sequence analysis of the intracellular antibody scFv panels revealed a sequence conservation indicating an intracellular antibody consensus for both VH and VL, which could form the basis for the de novo synthesis of intracellular antibody libraries to be used with intracellular antibody-capture technology.  相似文献   

19.
A cellular assay system for measuring the activity of cytoplasmically expressed anti-GCN4 scFv fragments directed against the Gcn4p dimerization domain was established in the budding yeast Saccharomyces cerevisiae. The inhibitory potential of different constitutively expressed anti-GCN4 scFv intrabodies was monitored by measuring the activity of beta-galactosidase expressed from a GCN4-dependent reporter gene. The in vivo performance of these scFv intrabodies in specifically decreasing reporter gene activity was related to their in vitro stability, measured by denaturant-induced equilibrium unfolding. A framework-engineered stabilized version showed significantly improved activity, while a destabilized point mutant of the anti-GCN4 wild-type showed decreased effects in vivo. These results indicate that stability engineering can result in improved performance of scFv fragments as intrabodies. Increasing the thermodynamic stability appears to be an essential factor for improving the yield of functional scFv in the reducing environment of the cytoplasm, where the conserved intradomain disulfides of antibody fragments cannot form.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号