首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
2.
3.
4.
5.
We recently reported the discovery of a homeobox gene cluster on the mouse X chromosome, Rhox, whose 12 members are selectively expressed in specific cell types in reproductive organs. Here we report the existence of 20 additional Rhox homeobox genes in this gene cluster. Most of the newly identified Rhox paralogs retain the same order and relative orientation as three of the originally described Rhox genes, suggesting that they arose from recent duplications of this trimer unit. Many of these new Rhox family members are expressed in the testis and placenta. Analysis of synonymous and nonsynonymous substitutions in their homeodomain region suggests that these new Rhox paralogs duplicated so recently that their encoded proteins have not yet acquired distinct DNA-binding specificities. The existence of these new Rhox genes provides an opportunity to examine the initial stages of gene cluster evolution.  相似文献   

6.
Reproductive capacity is fundamental to the survival of all species. Consequently, much research has been undertaken to better understand gametogenesis and the interplay between germ cells and the somatic cell lineages of the gonads. In this study, we have analyzed the embryonic expression pattern of the X-linked gene family Reproductive homeobox genes on the X chromosome (Rhox) in mice. Our data show that eight members of the Rhox gene family are developmentally regulated in sexually dimorphic and temporally dynamic patterns in the developing germ cells during early gonadogenesis. These changes coincide with critical stages of differentiation where the germ cells enter either mitotic arrest in the testis or meiotic arrest in the ovary. Finally, we show that Rhox8 (Tox) is the only member of the Rhox gene family that is expressed in the somatic compartment of the embryonic gonads. Our results indicate that the regulation of Rhox gene expression and its potential function during embryogenesis are quite distinct from those previously reported for Rhox gene regulation in postnatal gonads.  相似文献   

7.
RHOX5基因是最早发现的小鼠RHOX基因簇(reproductive homeobox on the X chromosome)成员,可特异性地在生殖系统中表达.RHOX5蛋白在胚胎发育、生殖组织的发育、精子的生成和成熟等多个环节发挥作用,但其功能的发挥途径尚不明确.在前期筛选与RHOX5蛋白相互作用的分子中初步获得一个BRPF1的新型转录本BRPF2.进一步构建pGBKT7-BRPF2质粒,酵母双杂交实验确定其与RHOX5蛋白的相互作用,GST-pull down实验确定其在体外的直接结合;PCR扩增BRPF1基因,构建pGBKT7-BRPF1和pGADT7-BRPF1质粒,酵母双杂交实验和GST-pull down实验证明RHOX5蛋白亦可以直接结合BRPF1蛋白.BRPF1及其新型转录本BRPF2与RHOX5蛋白间的相互作用证实暗示了BRPF2极有可能与BRPF1竞争性结合RHOX5蛋白,为三种蛋白功能的研究提供了新的思路.  相似文献   

8.
9.
The mechanisms by which the region-specific expression patterns of clustered genes evolve are poorly understood. The epididymis is an ideal organ to examine this, as it is a highly segmented tissue that differs significantly in structure between closely related species. Here we examined this issue through analysis of the rapidly evolving X-linked reproductive homeobox (Rhox) gene cluster, the largest known homeobox gene cluster in metazoans. In the mouse, we found that most Rhox genes are expressed primarily in the caput region of the epididymis, a site where sperm mature and begin acquiring forward motility. This region-specific expression pattern depends, in part, on the founding member of the Rhox cluster--Rhox5--as targeted mutation of Rhox5 greatly diminishes the expression of several other family members in the caput region. In the rat, Rhox5 expression switches from the caput to the site of sperm storage: the cauda. All Rhox genes under the control of Rhox5 in the mouse epididymis display a concomitant change in their regional expression in the rat epididymis. Our results lead us to propose that widespread changes in the region-specific expression pattern of genes over evolutionary time can be the result of alterations of one or only a few master regulatory genes.  相似文献   

10.
11.
12.
Wang X  Zhang J 《Genomics》2006,88(1):34-43
Rhox is a recently identified cluster of 12 X-linked homeobox genes in mice. The expression pattern of Rhox genes during postnatal testis development corresponds to their chromosomal position, much like the colinear gene regulation of the Hox gene clusters during animal embryonic development. We here report the identification of 18 additional Rhox genes and 3 pseudogenes in mice. Comparative analyses of the mouse, rat, human, dog, cow, opossum, and chicken genomes suggest that the Rhox cluster originated in the common ancestor of primates and rodents. It subsequently underwent two remarkable expansions, first in the common ancestor of mice and rats and then in mice. Positive selection promoting amino acid substitutions was detected in some young Rhox genes, suggesting adaptive functional diversification. The recent expansions of the Rhox cluster provide an opportunity to study the mechanism and origin of colinear gene regulation, but they may also undermine the utility of mouse models for understanding the development and physiology of the human reproductive system.  相似文献   

13.
Spermatogenesis is dependent primarily on testosterone action on the Sertoli cells, but the molecular mechanisms have not been identified. Attempts to identify testosterone-regulated target genes in Sertoli cells have used microarray analysis of gene expression in mice lacking the androgen receptor (AR) in Sertoli cells (SCARKO) and wild-type mice, but the analyses have been complicated both by alteration of germ cell composition of the testis when pubertal or adult mice were used and by differences in Sertoli-cell gene expression from the expression in adults when prepubertal mice were used. To overcome these limitations and identify AR-regulated genes in adult Sertoli cells, we compared gene expression in adult jsd (Utp14b jsd/jsd, juvenile spermatogonial depletion) mouse testes and with that in SCARKO-jsd mouse testes, since their cellular compositions are essentially identical, consisting of only type A spermatogonia and somatic cells. Microarray analysis identified 157 genes as downregulated and 197 genes as upregulated in the SCARKO-jsd mice compared to jsd mice. Some of the AR-regulated genes identified in the previous studies, including Rhox5, Drd4, and Fhod3, were also AR regulated in the jsd testes, but others, such as proteases and components of junctional complexes, were not AR regulated in our model. Surprisingly, a set of germ cell–specific genes preferentially expressed in differentiated spermatogonia and meiotic cells, including Meig1, Sycp3, and Ddx4, were all upregulated about 2-fold in SCARKO-jsd testes. AR-regulated genes in Sertoli cells must therefore be involved in the regulation of spermatogonial differentiation, although there was no significant differentiation to spermatocytes in SCARKO-jsd mice. Further gene ontogeny analysis revealed sets of genes whose changes in expression may be involved in the dislocation of Sertoli cell nuclei in SCARKO-jsd testes.  相似文献   

14.
15.
Male mice deficient in BCLW, a death-protecting member of the BCL2 family, are sterile due to an arrest in spermatogenesis that is associated with a gradual loss of germ cells and Sertoli cells from the testis. As Bclw is expressed in both Sertoli cells and diploid male germ cells, it has been unclear which of these cell types requires BCLW in a cell-autonomous manner for survival. To determine whether death of Sertoli cells in Bclw mutants is influenced by the protracted loss of germ cells, we examined testes from Bclw/c-kit double mutant mice, which lack germ cells from birth. Loss of BCLW-deficient Sertoli cells occurs in the absence of germ cells, indicating that germ cell death is not required to mediate loss of Sertoli cells in BCLW-deficient mice. This suggests that Sertoli cells require BCLW in a cell-intrinsic manner for long-term survival. The loss of Sertoli cells in Bclw mutants commences shortly after Sertoli cells have become postmitotic. In situ hybridization analysis indicates that Bclw is expressed in Sertoli cells both before and after exit from mitosis. Therefore, Bclw-independent pathways promote the survival of undifferentiated, mitotic Sertoli cells. We show that BAX and BAK, two closely related death-promoting members of the BCL2 family, are expressed in Sertoli cells. To determine whether either BAX or BAK activity is required for Sertoli cell death in Bclw mutant animals, we analyzed survival of Sertoli cells in Bclw/Bax and Bclw/Bak double homozygous mutant mice. While mutation of Bak had no effect, ablation of Bax suppressed the loss of Sertoli cells in Bclw mutants. Thus, BCLW mediates survival of postmitotic Sertoli cells in the mouse by suppressing death-promoting activity of BAX.  相似文献   

16.
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.  相似文献   

17.
The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.  相似文献   

18.
In mammalian cells, essential polyunsaturated fatty acids (PUFAs) are converted to longer PUFAs by alternating steps of elongation and desaturation. In contrast to other PUFA-rich tissues, the testis is continuously drained of these fatty acids as spermatozoa are transported to the epididymis. Alteration of the germ cell lipid profile from spermatogonia to condensing spermatids and mature spermatozoa has been described, but the male gonadal gene expression of the desaturases, responsible for the PUFA-metabolism, is still not established. The focus of this study was to characterize the expression and regulation of stearoyl-CoA desaturase 1 (SCD1), stearoyl-CoA desaturase 2 (SCD2), and Delta5- and Delta6-desaturase in rat testis. Desaturase gene expression was detected in testis, epididymis, and separated cells from seminiferous tubulus using Northern blot analysis. For the first time, SCD1 and SCD2 expression is demonstrated in rat testis and epididymis, both SCDs are expressed in epididymis, while testis mainly contains SCD2. Examination of the testicular distribution of Delta5- and Delta6-desaturase and SCD1 and SCD2 shows that all four desaturases seem to be localized in the Sertoli cells, with far lower expression in germ cells. In light of earlier published results showing that germ cells are richer in PUFAs than Sertoli cells, this strengthens the hypothesis of a lipid transport from the Sertoli cells to the germ cells. As opposed to what is shown in liver, Delta5- and Delta6-desaturase mRNA levels in Sertoli cells are up-regulated by dexamethasone. Furthermore, dexamethasone induces SCD2 mRNA. Insulin also up-regulates these three genes in the Sertoli cell, while SCD1 mRNA is down-regulated by both insulin and dexamethasone. Delta5- and Delta6-desaturase, SCD1, and SCD2 are all up-regulated by FSH. A similar up-regulation of the desaturases is observed when treating Sertoli cells with (Bu)2cAMP, indicating that the desaturase up-regulation observed with FSH treatment results from elevated levels of cAMP. Finally, testosterone has no influence on the desaturase gene expression. Thus, FSH seems to be a key regulator of the desaturase expression in the Sertoli cell.  相似文献   

19.
20.
Homologues of Drosophila germ cell determinant genes such as vasa, nanos and tudor have recently been implicated in development of the male germline in mice. In the present study, the mouse gene encoding Tudor domain containing protein 5 (TDRD5) was isolated from a 12.5-13.5 days post coitum (dpc) male-enriched subtracted cDNA library. Whole-mount in situ hybridization analysis of Tdrd5 expression in the mouse embryonic gonad indicated that this gene is upregulated in the developing testis from 12.5 dpc, with expression levels remaining higher in testis than ovary throughout embryogenesis. Expression of Tdrd5 was absent in testes isolated from We/We embryos, which lack germ cells. In situ hybridization (ISH) on cryosectioned 13.5 dpc testes suggests that expression of Tdrd5, like that of Oct4, is restricted to germ cells. Northern hybridization analysis of expression in adult tissues indicated that Tdrd5 is expressed in the testis only, implying that expression of this gene is restricted to the male germline throughout development to adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号