首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
N-terminal residues of muscle fructose 1,6-bisphosphatase (FBPase) are highly conserved among vertebrates. In this article, we present evidence that the conservation is responsible for the unique properties of the muscle FBPase isozyme: high sensitivity to AMP and Ca(2+) inhibition and the high affinity to muscle aldolase, which is a factor desensitizing muscle FBPase toward AMP and Ca(2+). The first N-terminal residue affecting the affinity of muscle FBPase to aldolase is arginine 3. On the other hand, the first residue significantly influencing the kinetics of muscle FBPase is proline 5. Truncation from 5-7 N-terminal residues of the enzyme not only decreases its affinity to aldolase but also reduces its k-(cat) and activation by Mg(2+), and desensitizes FBPase to inhibition by AMP and calcium ions. Deletion of the first 10 amino acids of muscle FBPase abolishes cooperativity of Mg(2+) activation and results in biphasic inhibition of the enzyme by AMP. Moreover, this truncation lowers affinity of muscle FBPase to aldolase about 14 times, making it resemble the liver isozyme. We suggest that the existence of highly AMP-sensitive muscle-like FBPase, activity of which is regulated by metabolite-dependent interaction with aldolase enables the precise regulation of muscle energy expenditures and might contributed to the evolutionary success of vertebrates.  相似文献   

2.
Insulin regulates glucose homeostasis by binding and activating the insulin receptor, and defects in insulin responses (insulin resistance) induce type 2 diabetes. SH2-B, an Src homology 2 (SH2) and pleckstrin homology domain-containing adaptor protein, binds via its SH2 domain to insulin receptor in response to insulin; however, its physiological role remains unclear. Here we show that SH2-B was expressed in the liver, skeletal muscle, and fat. Systemic deletion of SH2-B impaired insulin receptor activation and signaling in the liver, skeletal muscle, and fat, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and IRS2 and activation of the phosphatidylinositol 3-kinase/Akt and the Erk1/2 pathways. Consequently, SH2-B-/- knockout mice developed age-dependent hyperinsulinemia, hyperglycemia, and glucose intolerance. Moreover, SH2-B directly enhanced autophosphorylation of insulin receptor and tyrosine phosphorylation of IRS1 and IRS2 in an SH2 domain-dependent manner in cultured cells. Our data suggest that SH2-B is a physiological enhancer of insulin receptor activation and is required for maintaining normal insulin sensitivity and glucose homeostasis during aging.  相似文献   

3.
Several reports have indicated the absence of gluconeogenic enzymes in pancreatic islet cells. In contrast, here we demonstrate that liver fructose-1,6-bisphosphatase (FBPase) is highly expressed both in human and rat pancreas. Interestingly, pancreatic FBPase is active and functional, and is inhibited by AMP and fructose-2,6-bisphosphate (Fru-2,6-P2). These results suggest that FBPase may participate as a component of a metabolic sensing mechanism present in the pancreas. Immunolocalization analysis showed that FBPase is expressed both in human and rat Langerhans islets, specifically in beta cells. In humans, FBPase was also located in the canaliculus and acinar cells. These results indicate that FBPase coupled with phosphofructokinase (PFK) plays a crucial role in the metabolism of pancreatic islet cells. The demonstration of gluconeogenic recycling of trioses as a new metabolic signaling pathway may contribute to our understanding of the differences between the insulin secretagogues trioses, fructose, and glucose in pancreas.  相似文献   

4.
1. Among eleven tissues of rat, the liver type of fructose 1,6-bisphosphatase (FBPase) subunit was detected in the liver, kidney, testis, pancreas and lung by Western blot analysis using anti-(liver FBPase) or anti-(muscle FBPase) serum. 2. The muscle type of the enzyme subunit was detected only in the pancreas other than skeletal muscle. Both types of the enzyme subunit were found in the pancreas. 3. Neither anti-(liver FBPase) nor anti-(muscle FBPase) serum detected the band of enzyme subunit on the blots of the extracts of brain, heart, small intestinal mucosa, spleen and placenta. 4. FBPase is present in fetal rat liver at least as early as the 14th day of gestation. 5. In agreement with the increase in immunological staining density, the level of the enzyme activity in fetal liver increased exponentially during fetal development. 6. The muscle enzyme was not detected until the fetus reached the 19th day of gestation.  相似文献   

5.
Muscle fructose-1,6-bisphosphatase (FBPase) is highly sensitive toward inhibition by AMP and calcium ions. In allosteric inhibition by AMP, a loop 52-72 plays a decisive role. This loop is a highly conservative region in muscle and liver FBPases. It is feasible that the same region is involved in the inhibition by calcium ions. To test this hypothesis, chemical modification, limited proteolysis and site directed mutagenesis Glu(69)/Gln were employed. The chemical modification of Lys(71-72) and the proteolytic cleavage of the loop resulted in the significant decrease of the muscle FBPase sensitivity toward inhibition by calcium ions. The mutation of Glu(69)-->Gln resulted in a 500-fold increase of muscle isozyme I(0.5) vs. calcium ions. These results demonstrate the key role that the 52-72 amino acid loop plays in determining the sensitivity of FBPase to inhibition by AMP and calcium ions.  相似文献   

6.
Muscle aldolase bound to muscle FBPase (K(d) = 8.7 microM) decreases the latter's sensitivity towards AMP inhibition. I(0.5) of muscle FBPase was increased from 0.06 microM to 0.65 microM when determined in the presence of 10 microM of muscle aldolase. In the presence of 10 microM of liver aldolase I(0.5) of liver FBPase was increased only twofold, from 11.0 microM to 21.7 microM. The effect of muscle aldolase on liver FBPase and liver aldolase on muscle FBPase is rather negligible. Aldolase slightly affected interaction of FBPase with magnesium ions decreasing K(a) and Hill constant (n). No effect of aldolase on FBPase pH optimum was observed.  相似文献   

7.
8.
A new family of asymmetric thiol-disulfide exchange reagents, the dinitrophenyl alkyl disulfides (DNPSSR), was used to modify rat liver phenylalanine hydroxylase. The results indicate that the enzyme has two different types of reactive sulfhydryl (SH) residues per subunit. One SH residue was modified selectively by a DNPSSR having a neutral and hydrophilic alkyl group, and this modification was accompanied by appreciable activation of enzyme; the other SH residue was modified only by an anionic DNPSSR, and this modification did not result in activation. The catalytic properties of phenylalanine hydroxylase activated by DNPSSR were similar to those of the N-ethylmaleimide- (NEM-) modified enzyme, but the process of activation by DNPSSR was quite different from modification with NEM. An analysis of the reaction kinetics of the modification and of catalysis by the modified enzyme suggests that DNPSSR modification causes a change in the subunit interaction leading to a loss of the negative cooperativity normally seen with phenylalanine hydroxylase.  相似文献   

9.
Preincubation of chloroplastic fructose-1,6-bisphosphatase (FBPase) in the presence of Ca2+/fructose-1,6-bisphosphate (FBS) gives rise to an active enzyme. This non-reductive activation at pH 8 occurs in the same range of time (min) as the well known reductive activation by thioredoxins and this process is reversible. A conformational change of the enzyme occurs upon the activation by Ca2+/FBP. Indeed, the circular dichroism and the fluorescence spectra of the inactive and active enzymes are different. The titration of the sulfhydryl groups of both enzymes indicates that one -SH group per monomer is unmasked upon activation, and the isoelectrofocusing pattern shows that the pI of inactive FBPase is shifted from 4.26 to 4.56 upon this non-reductive process.  相似文献   

10.
Increased endogenous glucose production (EGP) predominantly from the liver is a characteristic feature of type 2 diabetes, which positively correlates with fasting hyperglycemia. Gluconeogenesis is the biochemical pathway shown to significantly contribute to increased EGP in diabetes. Fructose-1,6-bisphosphatase (FBPase) is a regulated enzyme in gluconeogenesis that is increased in animal models of obesity and insulin resistance. However, whether a specific increase in liver FBPase can result in increased EGP has not been shown. The objective of this study was to determine the role of upregulated liver FBPase in glucose homeostasis. To achieve this goal, we generated human liver FBPase transgenic mice under the control of the transthyretin promoter, using insulator sequences to flank the transgene and protect it from site-of-integration effects. This resulted in a liver-specific model, as transgene expression was not detected in other tissues. Mice were studied under the following conditions: 1) at two ages (24 wk and 1 yr old), 2) after a 60% high-fat diet, and 3) when bred to homozygosity. Hemizygous transgenic mice had an approximately threefold increase in total liver FBPase mRNA with concomitant increases in FBPase protein and enzyme activity levels. After high-fat feeding, hemizygous transgenics were glucose intolerant compared with negative littermates (P < 0.02). Furthermore, when bred to homozygosity, chow-fed transgenic mice showed a 5.5-fold increase in liver FBPase levels and were glucose intolerant compared with negative littermates, with a significantly higher rate of EGP (P < 0.006). This is the first study to show that FBPase regulates EGP and whole body glucose homeostasis in a liver-specific transgenic model. Our homozygous transgenic model may be useful for testing human FBPase inhibitor compounds with the potential to treat patients with type 2 diabetes.  相似文献   

11.
The pea chloroplast fructose-1,6-bisphosphatase (FBPase) gene was cloned from a pea genomic library and sequenced. The gene contained three introns and four exons. Both in vitro and in vivo analyses of the promoter region of the gene were carried out simultaneously to elucidate the mechanisms of light-mediated gene expression. Two light-responsive elements were identified in gel mobility shift assays: a GT-1-like sequence for the binding of a GT-1-like factor (termed pea factor 1; PF1) and a binding site for a dark-specific factor (termed pea factor 2; PF2). The binding affinity of PF1 was higher in light-grown peas than in dark-grown peas and was affected by phosphorylation. The binding site was located at nucleotides (nt) -326 to -341. PF2 binding was dark-specific and the binding region was located upstream of the PF1-binding site (nt -492 to -412). In vivo experiments with transgenic tobacco plants suggested that the region between nt -411 and -272 contained a PF1-binding site that promoted light-mediated expression of the pea chloroplast FBPase. In contrast, the 81-bp region between nt -492 and -412, which is located further upstream than the PF1-binding site, negatively regulated light-mediated expression of FBPase. Moreover, activation of gene expression by the region (nt -411 to -272) contained a PF1-binding site that was sensitive to red-light irradiation, suggesting that the expression of the chloroplast FBPase was regulated by the phytochrome system. Interestingly, the binding region for the dark-specific factor (PF2; nt -492 to -412) not only repressed gene expression in the dark, but also acted as a light-dependent activating element of the chloroplast FBPase gene.  相似文献   

12.
Phosphatases of the regenerating liver (PRL) play oncogenic roles in cancer development and metastasis. Although previous studies indicate that PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways, the mechanism by which it activates these signaling events remains unclear. We have identified a PRL-1-binding peptide (Peptide 1) that shares high sequence identity with a conserved motif in the Src homology 3 (SH3) domain of p115 Rho GTPase-activating protein (GAP). p115 RhoGAP directly binds PRL-1 in vitro and in cells via its SH3 domain. Structural analyses of the PRL-1·Peptide 1 complex revealed a novel protein-protein interaction whereby a sequence motif within the PxxP ligand-binding site of the p115 RhoGAP SH3 domain occupies a folded groove within PRL-1. This prevents the canonical interaction between the SH3 domain of p115 RhoGAP and MEKK1 and results in activation of ERK1/2. Furthermore, PRL-1 binding activates RhoA signaling by inhibiting the catalytic activity of p115 RhoGAP. The results demonstrate that PRL-1 binding to p115 RhoGAP provides a coordinated mechanism underlying ERK1/2 and RhoA activation.  相似文献   

13.
Adenosine 5'-monophosphate (AMP) inhibits muscle fructose 1,6-bisphosphatase (FBPase) about 44 times stronger than the liver isozyme. The key role in strong AMP binding to muscle isozyme play K20, T177 and Q179. Muscle FBPase which has been mutated towards the liver enzyme (K20E/T177M/Q179C) is inhibited by AMP about 26 times weaker than the wild-type muscle enzyme, but it binds the fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP), similarly to the wild-type liver enzyme. The reverse mutation of liver FBPase towards the muscle isozyme significantly increases the affinity of the mutant to TNP-AMP. High affinity to the inhibitor but low sensitivity to AMP of the liver triple mutant suggest differences between the isozymes in the mechanism of allosteric signal transmission.  相似文献   

14.
Among various routes for the biological hydrogen production, the NAD(P)H-dependent pentose phosphate (PP) pathway is the most efficient for the dark fermentation. Few studies, however, have focused on the glucose-6-phosphate 1-dehydrogenase, encoded by zwf, as a key enzyme activating the PP pathway. Although the gluconeogenic activity is essential for activating the PP pathway, it is difficult to enhance the NADPH production by regulating only this activity because the gluconeogenesis is robust and highly sensitive to concentrations of glucose and AMP inside the cell. In this study, the FBPase II (encoded by glpX), a regulation-insensitive enzyme in the gluconeogenic pathway, was activated. Physiological studies of several recombinant, ferredoxin-dependent hydrogenase system-containing Escherichia coli BL21(DE3) strains showed that overexpression of glpX alone could increase the hydrogen yield by 1.48-fold compared to a strain with the ferredoxin-dependent hydrogenase system only; the co-overexpression of glpX with zwf increased the hydrogen yield further to 2.32-fold. These results indicate that activation of the PP pathway by glpX overexpression-enhanced gluconeogenic flux is crucial for the increase of NAD(P)H-dependent hydrogen production in E. coli BL21(DE3).  相似文献   

15.
Glucosamine-6-phosphate isomerase deaminase (2-amino-2-deoxy-d-glucose-6-phosphate ketol isomerase (deaminating), EC 5.3.1.10) from Escherichia coli is an hexameric homopolymer that contains five half-cystines per chain. The reaction of the native enzyme with 5′,5′-dithiobis-(2-nitrobenzoate) or methyl iodide revealed two reactive SH groups per subunit, whereas a third one reacted only in the presence of denaturants. Two more sulfhydryls appeared when denatured enzyme was treated with dithiothreitol, suggesting the presence of one disulfide bridge per chain. The enzyme having the exposed and reactive SH groups blocked with 5′-thio-2-nitrobenzoate groups was inactive, but the corresponding alkylated derivative was active and retained its homotropic cooperativity toward the substrate, d-glucosamine 6-phosphate, and the allosteric activation by N-acetyl-d-glucosamine 6-phosphate. Studies of SH reactivity in the presence of enzyme ligands showed that a change in the availability of these groups accompanies the allosteric conformational transition. The results obtained show that sulfhydryls are not essential for catalysis or allosteric behavior of glucosamine-6-phosphate deaminase.  相似文献   

16.
AMP is an allosteric inhibitor of human muscle and liver fructose-1,6-bisphosphatase (FBPase). Despite strong similarity of the nucleotide binding domains, the muscle enzyme is inhibited by AMP approximately 35 times stronger than liver FBPase: I0.5 for muscle and for liver FBPase are 0.14 microM and 4.8 microM, respectively. Chimeric human muscle (L50M288) and chimeric human liver enzymes (M50L288), in which the N-terminal residues (1-50) were derived from the human liver and human muscle FBPases, respectively, were inhibited by AMP 2-3 times stronger than the wild-type liver enzyme. An amino acid exchange within the N-terminal region of the muscle enzyme towards liver FBPase (Lys20-->Glu) resulted in 13-fold increased I0.5 values compared to the wild-type muscle enzyme. However, the opposite exchanges in the liver enzyme (Glu20-->Lys and double mutation Glu19-->Asp/Glu20-->Lys) did not change the sensitivity for AMP inhibition of the liver mutant (I0.5 value of 4.9 microM). The decrease of sensitivity for AMP of the muscle mutant Lys20-->Glu, as well as the lack of changes in the inhibition by AMP of liver mutants Glu20-->Lys and Glu19-->Asp/Glu20-->Lys, suggest a different mechanism of AMP binding to the muscle and liver enzyme.  相似文献   

17.
Using a streptozotocin-induced type 1 diabetic rat model, we analyzed and separated the effects of hyperglycemia and hyperinsulinemia over the in vivo expression and subcellular localization of hepatic fructose 1,6-bisphosphatase (FBPase) in the multicellular context of the liver. Our data showed that FBPase subcellular localization was modulated by the nutritional state in normal but not in diabetic rats. By contrast, the liver zonation was not affected in any condition. In healthy starved rats, FBPase was localized in the cytoplasm of hepatocytes, whereas in healthy re-fed rats it was concentrated in the nucleus and the cell periphery. Interestingly, despite the hyperglycemia, FBPase was unable to accumulate in the nucleus in hepatocytes from streptozotocin-induced diabetic rats, suggesting that insulin is a critical in vivo modulator. This idea was confirmed by exogenous insulin supplementation to diabetic rats, where insulin was able to induce the rapid accumulation of FBPase within the hepatocyte nucleus. Besides, hepatic FBPase was found phosphorylated only in the cytoplasm, suggesting that the phosphorylation state is involved in the nuclear translocation. In conclusion, insulin and not hyperglycemia plays a crucial role in the nuclear accumulation of FBPase in vivo and may be an important regulatory mechanism that could account for the increased endogenous glucose production of liver of diabetic rodents.  相似文献   

18.
It has been shown that the active dicyano derivative of creatine kinase (ATP:creatine N-phosphotransferase) obtained by cyanolysis of the 5,5'-dithiobis(2-nitrobenzoic acid)-modified and inactivated enzyme contains, as does the native enzyme, two reactive SH groups. Modification of these two SH groups leads to complete inactivation of the dicyano enzyme. Reaction with 4-iodoacetamido-1-naphthol introduces fluorescent labels at these reactive SH groups of the native and the dicyano enzymes. Following tryptic digestion, the respective fluorescent-labelled peptides have been separated by HPLC and the amino acid composition analysis of these peptides has shown that they are consistent with the sequence of the peptide segment containing the active-site SH of Cys-282 of creatine kinase for both the native and the dicyano enzymes, showing that the active SH groups are free in the dicyano enzyme. Upon mild denaturation in 3 M urea, it can be shown that two of the SH groups partially buried in the native enzyme have been cyanylated in the dicyano enzyme. The two reactive SH groups are therefore essential for the activity of creatine kinase and the two cyanylated SH groups are internal groups which probably contributes partially to the stabilization of an active conformation of the enzyme molecule.  相似文献   

19.
Oyster extract was prepared by hydrolysis of oyster protein with proteases, Aloase (a protease from Bacillus subtilis), and Pancitase (a protease from Aspergillus oryzae). Rats were fed a diet containing 20% casein (the control diet) or 15% casein and 5% oyster extract (the oyster extract diet) as the protein source. The oyster extract diet exerted a significant reduction in serum cholesterol and liver triglyceride concentrations as compared with the control diet in Sprague-Dawley (SD) rats fed cholesterol-supplemented diets for 4 weeks. The activities of cytosolic fatty acid synthase and glucose-6-phosphate dehydrogenase were significantly lower in the oyster extract group than in the control group in the liver of SD rats. Hepatic cholesterol and triglyceride concentrations were significantly lower in spontaneously hypertensive (SH) rats and Otsuka Long-Evans Tokushima Fatty (OLETF) rats, type 2 diabetic rats, fed the oyster extract diet, for 4 weeks and 4 months respectively, than in those fed the control diet in the cholesterol-free diet. Blood pressure was significantly lower in the oyster extract group than in the control group at the 2nd and 4th weeks after the beginning of feeding experimental diets in SH rats. These results suggest that oyster extract prepared by hydrolysis of oyster induces triglyceride-lowering activity in the liver through a decrease in hepatic lipogenesis in SD rats, and that it exerts the antihypertensive effect in SH rats.  相似文献   

20.
It has been proposed that a hydrophobic groove surrounded by positively charged amino acids on thioredoxin (Trx) serves as the recognition and docking site for the interaction of Trx with target proteins. This model for Trx-protein interactions fits well with the Trx-mediated fructose-1,6-bisphosphatase (FBPase) activation, where a protruding negatively charged loop of FBPase would bind to this Trx groove, in a process involving both electrostatic and hydrophobic interactions. This model facilitates the prediction of Trx amino acid residues likely to be involved in enzyme binding. Site-directed mutagenesis of some of these amino acids, in conjunction with measurements of the FBPase activation capacity of the wild type and mutated Trxs, was used to check the model and provided evidence that lysine-70 and arginine-74 of pea Trx m play an essential role in FBPase binding. The binding parameters for the interaction between chloroplast FBPase and the wild type pea Trxs f and m, as well as mutated pea Trx m, determined by equilibrium dialysis in accordance with the Koshland-Nemethy-Filmer model of saturation kinetics, provided additional support for the role of these basic Trx residues in the interaction with FBPase. These data, in conjunction with the midpoint redox potential (E(m)) determinations of Trxs, support the hydrophobic groove model for the interaction between chloroplast FBPase and Trx. This model predicts that differences in the FBPase activation capacity of Trxs arise from their different binding abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号