首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood is composed of various types of cells and each type of cell has different structural and functional properties. However, the temporal and spatial diversities of cell wall components in the cell wall between different cell types are rarely understood. To extend our understanding of distributional diversities of cell wall components among cells, we investigated the immunolabeling of mannans (O-acetyl-galactoglucomannans, GGMs) and xylans (arabino-4-O-methylglucuronoxylans, AGXs) in ray cells and pits. The labeling of GGMs and AGXs was temporally different in ray cells. GGM labeling began to be detected in ray cells at early stages of S1 formation in tracheids, whereas AGX labeling began to be detected in ray cells at the S2 formation stage in tracheids. The occurrence of GGM and AGX labeling in ray cells was also temporally different from that of tracheids. AGX labeling began to be detected much later in ray cells than in tracheids. GGM labeling also began to be detected in ray cells either slightly earlier or later than in tracheids. In pits, GGM labeling was detected in bordered and cross-field pit membranes at early stages of pit formation, but not observed in mature pits, indicating that enzymes capable of GGM degradation may be involved in pit membrane formation. In contrast to GGMs, AGXs were not detected in pit membranes during the entire developmental process of bordered and cross-field pits. AGXs showed structural and depositional variations in pit borders depending on the developmental stage of bordered and cross-field pits.  相似文献   

2.
Compression wood (CW) contains higher quantities of β-1-4-galactan than does normal wood (NW). However, the physiological roles and ultrastructural distribution of β-1-4-galactan during CW formation are still not well understood. The present work investigated deposition of β-1-4-galactan in differentiating tracheids of Cryptomeria japonica during CW formation using an immunological probe (LM5) combined with immunomicroscopy. Our immunolabeling studies clearly showed that differences in the distribution of β-1-4-galactan between NW (and opposite wood, OW) and CW are initiated during the formation of the S1 layer. At this stage, CW was strongly labeled in the S1 layer, whereas no label was observed in the S1 layer of NW and OW. Immunogold labeling showed that β-1-4-galactan in the S1 layer of CW tracheids significantly decreased during the formation of the S2 layer. Most β-1-4-galactan labeling was present in the outer S2 region in mature CW tracheids, and was absent in the inner S2 layer that contained helical cavities in the cell wall. In addition, delignified CW tracheids showed significantly more labeling of β-1-4-galactan in the secondary cell wall, suggesting that lignin is likely to mask β-1-4-galactan epitopes. The study clearly showed that β-1-4-galactan in CW was mainly deposited in the outer portion of the secondary cell wall, indicating that its distribution may be spatially consistent with lignin distribution in CW tracheids of Cryptomeria japonica.  相似文献   

3.
We investigated the spatial and temporal distribution of xylans in the cell walls of differentiating earlywood tracheids of Cryptomeria japonica using two different types of monoclonal antibodies (LM10 and LM11) combined with immunomicroscopy. Xylans were first deposited in the corner of the S1 layer in the early stages of S1 formation in tracheids. Cell corner middle lamella also showed strong xylan labeling from the early stage of cell wall formation. During secondary cell wall formation, the innermost layer and the boundary between the S1 and S2 layers (S1/S2 region) showed weaker labeling than other parts of the cell wall. However, mature tracheids had an almost uniform distribution of xylans throughout the entire cell wall. Xylan localization labeled with LM10 antibody was stronger in the outer S2 layer than in the inner layer, whereas xylans labeled with LM11 antibody were almost uniformly distributed in the S2 layer. In addition, the LM10 antibody showed almost no xylan labeling in the S1/S2 region, whereas the LM11 antibody revealed strong xylan labeling in the S1/S2 region. These findings suggest that structurally different types of xylans may be deposited in the tracheid cell wall depending on the developmental stage of, or location in, the cell wall. Our study also indicates that deposition of xylans in the early stages of tracheid cell wall formation may be spatially consistent with the early stage of lignin deposition in the tracheid cell wall.  相似文献   

4.
Kim JS  Awano T  Yoshinaga A  Takabe K 《Planta》2012,235(6):1209-1219
The ultrastructure of the innermost surface of Cryptomeria japonica differentiating normal wood (NW) and compression wood (CW) was comparatively investigated by field emission electron microscopy (FE-SEM) combined with enzymatic degradation of hemicelluloses. Cellulose microfibril (CMF) bundles were readily observed in NW tracheids in the early stage of secondary cell wall formation, but not in CW tracheids because of the heavy accumulation of amorphous materials composed mainly of galactans and lignin. This result suggests that the ultrastructural deposition of cell wall components in the tracheid cell wall differ between NW and CW from the early stage of secondary cell wall formation. Delignified NW and CW tracheids showed similar structural changes during differentiating stages after xylanase or β-mannanase treatment, whereas they exhibited clear differences in ultrastructure in mature stages. Although thin CMF bundles were exposed in both delignified mature NW and CW tracheids by xylanase treatment, ultrastructural changes following β-mannanase treatment were only observed in CW tracheids. CW tracheids also showed different degradation patterns between xylanase and β-mannanase. CMF bundles showed a smooth surface in delignified mature CW tracheids treated with xylanase, whereas they had an uneven surface in delignified mature CW tracheids treated with β-mannanase, indicating that the uneven surface of CMF bundles was related to xylans. The present results suggest that ultrastructural deposition and organization of lignin and hemicelluloses in CW tracheids may differ from those of NW tracheids.  相似文献   

5.
We investigated the deposition of glucomannans (GMs) in differentiating earlywood tracheids of Cryptomeria japonica using immunocytochemical methods. GMs began to deposit at the corner of the cell wall at the early stages of S1 formation and showed uneven distribution in the cell wall during S1 formation. At the early stages of S2 formation, limited GM labeling was observed in the S2 layer, and then the labeling increased gradually. In mature tracheids, the boundary between the S1 and S2 layers and the innermost part of the cell wall showed stronger labeling than other parts of the cell wall. Deacetylation of GMs with mild alkali treatment led to a significant increase in GM labeling and a more uniform distribution of GMs in the cell wall than that observed before deacetylation, indicating that some GM epitopes may be masked by acetylation. However, the changes in GM labeling after deacetylation were not very pronounced until early stages of S2 formation, indicating that GMs deposited in the cell wall at early stages of cell-wall formation may contain fewer acetyl groups than those deposited at later stages. Additionally, the density of GM labeling increased in the cell wall in both specimens before and after GM deacetylation, even after cell-wall formation was complete. This finding suggests that some acetyl groups may be removed from GMs after cell-wall formation is complete as part one of the tracheid cell aging processes.  相似文献   

6.
Jong Sik Kim  Geoffrey Daniel 《Planta》2012,236(5):1367-1379
Microdistribution of mannans in Arabidopsis stem was examined using immunolocalization with mannan-specific monoclonal antibodies (LM21 and LM22). Mannan labeling in secondary xylem cells (except for protoxylem vessels) was initially detected in the cell wall during S2 formation and increased gradually during development. Labeling in metaxylem vessels (vessels) was detected earlier than that in xylary fibers (fibers), but was much weaker than fibers. The S1 layer of vessels and fibers showed much less labeling than the S2 layer. Some strong labeling was also detected in pit membranes of vessel pits. Interfascicular fibers (If-fibers) showed more heterogeneous labeling patterns than fibers by LM21. Unlike fibers, If-fibers also revealed some strong labeling in the cell corner of the S1 layer, indicating different mannan labeling patterns between If-fibers and fibers. Interestingly, protoxylem vessels (proto-vessels) showed strong labeling at the early stage of secondary xylem formation with more intense labeling in the outer- than inner cell wall even though fibers and vessels showed no or very low labeling at this stage. Labeling intensity of proto-vessels was also much stronger than vessels and stronger or slightly weaker than fibers by LM21 and LM22, respectively. Using pectinase and mild alkali treatment, the presence of mannans in parenchymatous cells was also confirmed. Together our observations indicate that there are temporal and spatial variations in mannan labeling between cell types in the secondary xylem of Arabidopsis stems. Some similar features of mannan labeling between Arabidopsis and poplar are also discussed.  相似文献   

7.
Replicas and ultrathin sections of the wood of two Paleozoic genera, Callixylon and Cordaites, were examined with the electron microscope. The pattern of wall layering of Callixylon closely resembles that of extant plants. An electron-dense compound middle lamella markedly thickened at the corners of cells, a thin, electron-transparent S1 layer of the secondary wall, and a thick, electron-dense, partially decayed S2 layer of the secondary wall are evident in transverse sections of tracheids. No S3 layer seems to be present. The structure of the bordered pit-pairs of Callixylon is described in detail. The slitlike outer pit apertures are conspicuously narrower and shorter than the inner pit apertures. Both sections and replicas of the bordered pit-pairs display pit membranes lacking tori. Microfibrillar structure is obscure in both sections and replicas of Callixylon wood. Replicas of the bordered pits of Cordaites wood are very similar to those of Callixylon. Pit membranes lack tori, and microfibrillar structure is not very discernible. Knowledge about the evolution of the torus is summarized. It is postulated that the type of pit membrane of Callixylon and Cordaites, which is very homogeneous in structure and lacks a torus, represents a primitive condition among gymnosperms from which structurally more complex pit membranes and the torus later evolved.  相似文献   

8.
The mechanisms behind compressive stress generation in gymnosperms are not yet fully understood. Investigating the structure–function relationships at the tissue and cell level, however, can provide new insights. Severe compression wood of all species lacks a S3 layer, has a high microfibril angle in the S2 layer and a high lignin content. Additionally, special features like helical cavities or spiral thickenings appear, which are not well understood in terms of their mechanical relevance, but need to be examined with regard to evolutionary trends in compression wood development. Thin compression wood foils and isolated tracheids of four gymnosperm species [Ginkgo biloba L., Taxus baccata L., Juniperus virginiana L., Picea abies (L.) Karst.] were investigated. The tracheids were isolated mechanically by peeling them out of the solid wood using fine tweezers. In contrast to chemical macerations, the cell wall components remained in their original condition. Tensile properties of tissue foils and tracheids were measured in a microtensile apparatus under wet conditions. Our results clearly show an evolutionary trend to a much more flexible compression wood. An interpretation with respect to compressive stress generation is discussed.  相似文献   

9.
Ascorbic acid and xylem development in trunks of the Siberian larch trees   总被引:1,自引:0,他引:1  
The contents of ascorbic acid (AA) and its oxidized form, dehydroascorbic acid (DHA), were assessed as related to the tracheid differentiation in the course of early and late wood development in the Siberian larch (Larix sibirica Ldb.) trees. The samples of the cambium, cell enlargement zone and mature cells were collected at the successive developmental stages by scraping tissues off layer by layer from trunk segments of the 20-year-old trees according to anatomical and histochemical criteria. While cambium initials were rapidly dividing, the AA contents per dry weight and per cell considerably exceeded the corresponding values characteristic of the late xylem development; such difference corresponded to the higher number of early tracheids per annual ring, as compared to the late tracheids. The AA content decreased as cells enlarged. The radial growth of the early wood tracheids, as compared to the late wood tracheids, was accompanied with a threefold increase in the AA and a decline in the DHA contents. The AA/DHA ratio was in line with the early tracheid enlargement. The maximum AA content was observed at the early stage of the secondary cell wall thickening in the tracheids of early and late xylem preceding lignification. During this stage of early wood development, the DHA content exceeded sixfold the corresponding value in the late xylem; as a result, the initial rates of lignification were different in two tissues. The rate of lignification in a newly developing layer of the early xylem increased gradually and was the highest in the completely differentiated tracheids. In the late xylem, the lignification rate was at its highest at the very beginning and then declined in the course of tracheid maturation. The dissimilar patterns of lignification in the early and late xylem were primarily associated with the DHA content, which increased in the early xylem and decreased in the maturing late xylem. Thus, the AA content and its accessibility to oxidation in the growing and mature xylem cells exhibited the diverse developmental patterns in the early and late xylem: two tissues differed in the tracheid number and radial diameter as well as in the rate of lignification.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 97–107.Original Russian Text Copyright © 2005 by Antonova, Chaplygina, Varaksina, Stasova.  相似文献   

10.
Ultrastructural and cytochemical features of tracheid cell walls were examined in oven-dried Pinus radiata D. Don disks that demonstrated a range in severity of the wood quality flaw referred to as “intra-ring checking,” from severe to none. Observations of the tracheid cell wall at the ultrastructural level included the localization of the origin of tears between adjacent cells, and the occurrence of tracheid collapse. Cytochemical analysis focused on determination of the spatial distribution of lignin within the cell wall layers. Tracheid lignin content was further quantified using the Klason and acetyl bromide methods. We found considerable homogeneity in the point of failure in the wood demonstrating intra-ring checking, with 80% of the tears occurring at the compound middle lamella (CML)/S1 cell wall interface. In these samples, tracheid collapse was observed adjacent to the tear as well as between tears, and the cell walls appeared to have altered lignin distribution, particularly in the S1 wall layer. We suggest that alterations in the CML/S1 layers create a weak point in the cell wall, making it prone to the observed tears. The mechanisms that may be involved in the occurrence of intra-ring checking are discussed at the morphological level. Tracy L. Putoczki and Hema Nair contributed equally to this work.  相似文献   

11.
Hosoo Y  Imai T  Yoshida M 《Protoplasma》2006,229(1):11-19
Summary. We investigated the diurnal differences in the innermost surface of tracheid cell walls at various developmental stages from cambium to mature xylem. Cryptomeria japonica saplings were cultivated in a growth chamber with a light cycle set at 14 h of light and 10 h of darkness. Samples were collected from the saplings during both the light and dark periods. The innermost surface of cell walls was immunogold-labeled with anti-glucomannan or anti-xylan antiserum and was observed by field emission scanning electron microscopy. Diurnal differences in the aspect of the innermost surface of cell walls were seen only in S2-layer-forming tracheids; cellulose microfibrils were clearly evident during the light period, and amorphous material containing glucomannans and xylans was prevalent during the dark period. Cellulose microfibrils were present at the primary-wall formation and S1-layer-forming stages, and many warts were observed in the mature tracheids, regardless of the time of sampling. The densities of labeled glucomannans on the innermost surface of cell walls in S1- and S2-forming tracheids and of labeled xylans in S2-forming tracheids during the dark period were significantly higher than those during the light period. These results suggest a diurnal periodicity in the supply of cell wall matrix containing hemicellulose to the innermost surface of developing secondary walls. Correspondence and reprints: Laboratory of Bio-material Physics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan. Present address: Chair of Climate Change Science for Forestry and Water Resources, Graduate School of Science and Technology, Niigata University, Niigata, Japan.  相似文献   

12.
Kim JS  Daniel G 《Planta》2012,236(1):35-50
Present work investigated glucomannan (GM) and xylan distribution in poplar xylem cells of normal- (NW), opposite- (OW) and tension wood (TW) with immunolocalization methods. GM labeling was mostly detected in the middle- and inner S(2) (+S(3)) layer of NW and OW fibers, while xylan labeling was observed in the whole secondary cell wall. GM labeling in vessels of NW and OW was much weaker than in fibers and mostly detected in the S(2) layer, whereas slightly stronger xylan labeling than fibers was detected in the whole secondary cell wall of vessels. Ray cells in NW and OW showed no GM labeling, but strong xylan labeling. These results indicate that GMs and xylans are spatially distributed in poplar xylem cells with different concentrations present in different cell types. Surprisingly, TW showed significant decrease of GM labeling in the normal secondary cell wall of gelatinous (G) fibers compared to NW and OW, while xylan labeling was almost identical indicating that the GM and xylan synthetic pathways in fibers have different reaction mechanisms against tension stress. Unlike fibers, no notable changes in GM labeling were detected in vessels of TW, suggesting that GM synthesis in vessels may not be affected by tension stress. GM and xylan was also detected in the G-layer with slightly stronger and much weaker labeling than the normal secondary cell wall of G-fibers. Differences in GM and xylan distribution are also discussed for the same functional cells found in hardwoods and softwoods.  相似文献   

13.
14.
To advance our understanding of the formation of tension wood, we investigated the macromolecular arrangement in cell walls by Fourier transform infrared microspectroscopy (FTIR) during maturation of tension wood in poplar (Populus tremula x P. alba, clone INRA 717-1B4). The relation between changes in composition and the deposition of the G-layer in tension wood was analysed. Polarised FTIR measurements indicated that in tension wood, already before G-layer formation, a more ordered structure of carbohydrates at an angle more parallel to the fibre axis exists. This was clearly different from the behaviour of opposite wood. With the formation of the S2 layer in opposite wood and the G-layer in tension wood, the orientation signals from the amorphous carbohydrates like hemicelluloses and pectins were different between opposite wood and tension wood. For tension wood, the orientation for these bands remains the same all along the cell wall maturation process, probably reflecting a continued deposition of xyloglucan or xylan, with an orientation different to that in the S2 wall throughout the whole process. In tension wood, the lignin was more highly oriented in the S2 layer than in opposite wood.  相似文献   

15.
Kim JS  Daniel G 《Planta》2012,236(4):1275-1288
We investigated the microdistribution of xylans in different cell types of Arabidopsis stem using immunolocalization methods with LM10 and LM11 antibodies. Xylan labeling in xylary fibers (fibers) was initially detected at the cell corner of the S(1) layer and increased gradually during fiber maturation, showing correlation between xylan labeling and general secondary cell wall formation processes in fibers. Metaxylem vessels (vessels) showed earlier development of secondary cell walls than fibers, but revealed almost identical labeling patterns to fibers during maturation. No difference in labeling patterns and intensity was detected in the cell wall of fibers, vessels and protoxylem vessels (proto-vessels) between LM10 and LM11, indicating that vascular bundle cells may be chemically composed of a highly homogeneous xylan type. Interestingly, interfascicular fibers (If-fibers) showed different labeling patterns between the two antibodies and also between different developmental stages. LM10 showed no labeling in primary cell walls and intercellular layers of If-fibers at the S(1) formation stage, but some labeling was detected in middle lamella cell corner regions at the S(2) formation stage. In contrast, LM11 revealed uniform labeling across the If-fiber cell wall during all developmental stages. These results suggest that If-fibers have different xylan deposition processes and patterns from vascular bundle cells. The presence of xylan was also confirmed in parenchyma cells following pectinase treatment. Together our results indicate that there are temporal and spatial differences in xylan labeling between cell types in Arabidopsis stem. Differences in xylan labeling between Arabidopsis stem and poplar are also discussed.  相似文献   

16.
Quantitative and qualitative features of wood anatomy are reported for ten collections of seven species of Bubbia. Variations on the basic plan for Winteraceae can be interpreted in terms of taxonomic and ecological distinctions. Tracheid length is correlated with plant size and habit: tracheids are shortest in shrubs. Tracheid wall thickness and ray cell wall thickness distinguish species. Ray cell procumbency and multiseriate ray width increase with age. Growth rings occur only in a species from stream margins. SEM studies reveal absence of a warty layer within tracheids. Helical thickenings are absent. Presence of these two features in Pseudowintera may be correlated with the cool temperate habitats of that genus. Overlap areas of tracheids in Bubbia show various degrees of scalariform pitting, ranging from none (B. semecarpoides) to abundant presence (B. balansae). Perforation-like pits in tracheids of the latter prove, with SEM studies, to have pit membranes containing porosities less than 1 μm in diameter. Scalariform pitting on overlap areas is absent in earlier secondary xylem and increases during later secondary xylem. Scalariform lateral wall pitting can occur in abnormally wide tracheids formed after pauses in cambial activity. These facts show that primitive dicotyledon woods like those of Bubbia can activate genetic information for scalariform end wall patterns and lateral wall pitting such as primitive vessels show without the intervention of paedomorphosis. Paedomorphosis in dicotyledon woods is held still to apply only to special herbaceous and herblike growth forms, not to primarily woody plants. Progenesis (in xylem, loss of secondary xylem) is not held to be necessary to account for the scalariform patterns seen in tracheary elements of primitive dicotyledons. Reasons are given for rejection of the hypothesis that Winteraceae and other woody dicotyledons (Amborella, Sarcandra, Tetracentron, Trochodendron) are secondarily vesselless.  相似文献   

17.
One key event in the programmed cell death is nuclear DNA fragmentation. We investigated the timing of nuclear DNA fragmentation during the cell death of short-lived ray tracheids in Pinus densiflora using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Fluorescence due to TUNEL was detected only in deformed nuclei that lacked obvious chromatin in ray tracheids that were adjacent to ray tracheids that no longer contained nuclei. Our observations revealed that nuclear DNA fragmentation occurred only at the final stage of cell death in ray tracheids in situ.  相似文献   

18.
Joseleau JP  Imai T  Kuroda K  Ruel K 《Planta》2004,219(2):338-345
The occurrence of lignin in the additional gelatinous (G-) layer that differentiates in the secondary wall of hardwoods during tension wood formation has long been debated. In the present work, the ultrastructural distribution of lignin in the cell walls of normal and tension wood fibres from poplar (Populus deltoides Bartr. ex Marshall) was investigated by transmission electron microscopy using cryo-fixation–freeze-substitution in association with immunogold probes directed against typical structural motifs of lignin. The specificity of the immunological probes for condensed and non-condensed guaiacyl and syringyl interunit linkages of lignin, and their high sensitivity, allowed detection of lignin epitopes of definite chemical structures in the G-layer of tension wood fibres. Semi-quantitative distribution of the corresponding epitopes revealed the abundance of syringyl units in the G-layer. Predominating non-condensed lignin sub-structures appeared to be embedded in the crystalline cellulose matrix prevailing in the G-layer. The endwise mode of polymerization that is known to lead to these types of lignin structures appears consistent with such an organized cellulose environment. Immunochemical labelling provides the first visualization in planta of lignin structures within the G-layer of tension wood. The patterns of distribution of syringyl epitopes indicate that syringyl lignin is deposited more intensely in the later phase of fibre secondary wall assembly. The data also illustrate that syringyl lignin synthesis in tension wood fibres is under specific spatial and temporal regulation targeted differentially throughout cell wall layers.Abbreviations G-layer Gelatinous layer - G Guaiacyl monomeric unit - PATAg Periodic acid–thiocarbohydrazide–silver proteinate - S Syringyl monomeric unit  相似文献   

19.
Summary In fibres of wood, the classical S1 and S2 layers are connectedvia a transition zone where a helicoidal texture occurs. In order to understand the actual mechanism of cellulose microfibril rotation in this zone, the study of relationship between cellulose and matrix was undertaken cytochemically at the ultrastructural level.Glucuronoxylans,i.e., the main hemicellulose component of hardwood, were studied in cell walls of linden tree. Xylanase-gold complexes were used as a new cytochemical tool to directly and specifically label glucuronoxylans within the wall of fibres. Subtractive localization (KOH or DMSO extraction and PATAg test or shadowing) associated with chemical analysis was carried out as control. The study of isolated glucuronoxylan molecules was undertaken in parallel.Both from direct (xylanase-gold labeling) and indirect techniques (extractions), glucuronoxylans appear preferentially concentrated in the transition zone which overlaps the layers S1 and S2. A comparison between KOH and DMSO extraction indicates a difference in accessibility of glucuronoxylans distributed across the whole wall and those located in the transition zone. Isolated molecules have a rodlike aspect and show a tendancy to spatially organize in parallel alignment. Cytochemical labeling of the isolated molecules concerns covalent linkages, vic-glycol groups and acid side groups along the main chain.The preferential localization indicates that in the helicoidal zone glucuronoxylans constitute a thick matrix embedding the cellulose microfibrils in the course of rotation. This data leads to a discussion of how these localized matrix molecules could intervene in the assembly and the twisted morphogenesis of the fibre cell wall.  相似文献   

20.
 The relationship between the cessation of cell expansion and formation of the secondary wall was investigated in the early-wood tracheids of Abies sachalinensis Masters by image analysis and field emission scanning electron microscopy. The area of the lumen and the length of the perimeter of the lumen of differentiating tracheids increased from the cambium towards the xylem. These increases had just ceased in the case of tracheids closest to the cambium in which birefringence was first detected by observations with a polarizing light microscope. Cellulose microfibrils (MFs) deposited on the innermost surfaces of radial walls were not well ordered during the expansion of cells, but well ordered MFs were deposited at the subsequent stage of cell wall formation. The first well ordered MFs were oriented in an S-helix. The well ordered MFs had already been deposited at the tracheids where birefringence was first detected under the polarizing light microscope. These results indicate that the deposition of the well ordered MFs, namely, the formation of the secondary wall, begins before the cessation of cell expansion of tracheids. Therefore, it seems that the expansion of tracheids is restricted by the deposition of the secondary wall because the cell walls become rigid simultaneously with the development of the secondary wall and, therefore, the yield point of cell walls exceeds the turgor pressure of the cell. Received: 3 July 1996 / Accepted: 24 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号