首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro affinity of metals for metallothionein (MT) is Zn less than Cd less than Cu less than Hg. In a previous study Cd(II) and Hg(II) displaced Zn(II) from rat hepatic Zn7-MT in vivo and ex vivo (Day et al., 1984, Chem. Biol. Interact. 50, 159-174). The ability of Cd(II) or Hg(II) to displace Zn(II) and/or Cu(II) from metallothionein in copper-preinduced rat liver (Zn, Cu-MT) was assessed. Cd(II) and Hg(II) can displace zinc from (Zn, Cu)-MT both in vivo and ex vivo. The in vitro displacement of copper from MT by Hg(II) was not confirmed in vivo and ex vivo. Cd(II) treatment did not alter copper levels in (Zn, Cu)-MT, as expected. Hg(II) treatment, however, did not decrease copper levels in MT, but rather increased them. The sum of the copper increase and mercury incorporation into MT matched the zinc decrease under in vivo conditions and actually exceeded the zinc decrease under ex vivo conditions. Short-term exposure of rat liver to exogenous metals can result in incorporation of these metals into MT by displacement of zinc from pre-existing MT. Displacement of copper from pre-existing MT by mercury, as predicted by in vitro experiments, was not confirmed under the conditions of our in vivo and ex vivo experiments. This result is explainable based on the differing affinities and/or preferences of the two metal clusters in MT.  相似文献   

2.
The potential of hyphenated techniques based on a combination of microbore reversed-phase (RP) HPLC or capillary zone electrophoresis (CZE) with inductively coupled plasma (ICP) or electrospray (ES) mass spectrometry (MS) was demonstrated for the characterization of metal complexes with metallothionein in rat liver and kidney. The mixture of MT complexes was isolated from the tissues by size-exclusion LC and further characterized in neutral pH conditions (pH 6.8-7.2) by RP-HPLC or CZE. The metal stoichiometry and the molar mass of the eluted complexes was measured by ICP-MS and ES-MS, respectively. An additional dimension to the analysis was achieved by post-column acidification of the chromatographic eluent that allowed the determination of the molecular weight of the demetallated complexes with 10-fold higher sensitivity. The approach allowed the detection of two major metallothionein (MT) isoforms (MT-1 and MT-2) in liver and one MT isoform in kidney. The actual number of peaks in chromatograms and electropherograms was bigger because of the formation of mixed Cd-Cu complexes of the same MT isoform that showed different hydrophobicities.  相似文献   

3.
This article is based on data on the levels of metals (Cd, Zn, Cu) and metallothionein (MT) determined radiochemically with203Hg in renal cortex and liver of 137 autopsy cases. From this number, for 23 cases, the gel filtration of the cytoplasmic fraction of the organs was performed. The molar content of metals in the MT fraction (Sephadex G-50) amounted to 46.9, 50.2, and 2.0% for Cd, Zn, and Cu in renal cortex, respectively, and to 8.3, 83.6, and 9.1% for Cd, Zn, and Cu in the liver, respectively. In parallel with the increase of Cd and MT in renal cortex, increasing saturation was found of the MT fraction by Cd, occurring at the expense of Zn and Cu. Equimolar amounts of Cd and Zn in the MT fraction are found at Cd level of 0.5 μmol Cd/g wet wt of renal cortex. In the liver, analogous dependency (elevation of %Zn, depression of %Cd and %Cu) were observed in relation to Zn and MT levels in this organ. The basic level of Zn (not bound with MT) was estimated at 0.5 μmol/g for both renal cortex and liver. A deficit of non-MT Zn in kidneys is proposed as an alternative mechanism of toxic Cd action.  相似文献   

4.
1. Repeated injections of zinc (Zn) and copper (Cu) into the frog Xenopus laevis caused accumulations of the respective metals in the liver and kidney. 2. The accumulated metals in the liver supernatant fractions were present as Zn- and Cu-binding proteins of the same properties as that of metallothionein (MT) induced by cadmium (Cd) injections. 3. The affinity of Zn, Cu and Cd ions to the metal-binding protein was in the decreasing order of Cu, Cd and Zn. 4. The Xenopus MT induced by Cd was unstable and disrupted easily to give two peaks as if the MT consists of two isometallothioneins.  相似文献   

5.
Four different hyphenated techniques: microbore reversed phase (RP) HPLC-ICP MS, CZE-ICP MS, RP HPLC-ES MS and CZE-ES MS were investigated for the characterization of metallothionein-metal complexes under neutral pH conditions. Particular attention was given to the differentiation between metallothionein and artifact signals, identification of mixed-metal complexes, and the validity of the molecular mass as the identification parameter of the different MT iso- and sub-isoforms. Despite the similar morphology of chromatograms and electrophoregrams mass spectrometry revealed different origin of the apparently corresponding peaks. The performance of the four above mentioned techniques was characterized using the example of rabbit liver MT-1 preparation. Reversed-phase HPLC with post-column acidification prior to ES MS was judged to be the most versatile technique for the characterization of metal complexes with metallothioneins but other techniques offer valuable auxiliary information.  相似文献   

6.
7.
The copper(I) and silver(I) binding properties of the beta fragment of recombinant mouse metallothionein I have been studied by electronic absorption and circular dichroism spectroscopy. When possible, the stoichiometry of the species formed was confirmed by electrospray mass spectrometry. The behaviour observed differs from that reported for the native protein. Titration of either Zn3-beta MT at pH 7 or apo-beta MT at pH 3 with Cu+ leads to the formation of species having the same stoichiometry and structure: Cu6-beta MT, Cu7-beta MT and Cu10-beta MT. In the first stage of the titration of Zn3-beta MT with Cu+ at pH 7 one additional species of formula Cu4Zn1-beta MT was detected. In contrast, the titration of Zn3-beta MT at pH 7.5 and of apo-beta MT at pH 2.5 with Ag+ proceeds through different reaction pathways, affording ZnxAg3-beta MT, Ag6-beta MT and Ag9-beta MT or Ag3-beta MT, Ag6-beta MT and Ag9-beta MT, respectively. The CD envelope corresponding to species with the same stoichiometric ratio, Ag6-beta MT and Ag9-beta MT, indicates that they have a different structure at each pH value. On the basis of the differences observed, the postulated similarity between copper and silver binding to metallothionein may be questioned.  相似文献   

8.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

9.
Bismuth complexes are widely used as anti-ulcer drugs and can significantly reduce the side effects of platinum anti-cancer drugs. Bismuth is known to induce the synthesis of metallothionein (MT) in the kidney, but there are few chemical studies on the interactions of bismuth complexes with metallothionein. Here we show that Bi(3+) binds strongly to metallothionein with a stoichiometry bismuth:MT = 7:1 (Bi(7)MT) and can readily displace Zn(2+) and Cd(2+). Bismuth is still bound to the protein even in strongly acidic solutions (pH 1). Reactions of bismuth citrate with MT are faster than those of [Bi(EDTA)](-), and both exhibit biphasic kinetics. (1)H NMR data show that Zn(2+) is displaced faster than Cd(2+), and that both Zn(2+) and Cd(2+) in the beta-domain (three metal cluster) of MT are displaced by Bi(3+) much faster than from the alpha-domain (four metal cluster). The extended x-ray absorption fine structure spectrum of Bi(7)MT is very similar to that for the glutathione and N-acetyl-L-cysteine complexes [Bi(GS)(3)] and [Bi(NAC)(3)] with an inner coordination sphere of three sulfur atoms and average Bi-S distances of 2.55 A. Some sites appear to contain additional short Bi-O bonds of 2.2 A and longer Bi-S bonds of 3.1 A. The Bi(3+) sites in Bi(7)MT are therefore highly distorted in comparison with those of Zn(2+) and Cd(2+).  相似文献   

10.
The characterization of metallothionein in the Urodele amphibian species Pleurodeles waltl was achieved. A simple and rapid method for identification of metallothionein, based on its strong affinity for cadmium (109Cd), was used. We were able to show that metallothionein is constitutively synthesized in liver, ovary and brain. The property of metallothionein to strongly bind essential (Zn, Cu) as well as toxic (Cd, Hg) metals is consistent with a dual role in cellular metabolism, ie. homeostatis and detoxification of heavy metal ions.  相似文献   

11.
Human metallothionein III (MT III) gene was synthesized with Escherichia coli preference codon usage and expressed in E. coli in glutathione-S-transferase (GST) fusion form. The recombinant MT III was released by proteinase Factor Xa digestion and purified with the yield of 2 mg/L culture, and its specific Cd2+ binding capability was confirmed. E. coli strain BL21(DE3), expressing MT III, showed metal tolerance between 0.1 and 0.5 mM Cd2+ and bacterial growth was inhibited at 1 mM Cd2+. MT III expressing E. coli strain showed binding discrimination between different metal ions in combination use, with the preference order of Cd2+ > Cu2+ > Zn2+. It absorbed different metal ions with relatively constant ratio and showed a cumulative absorption capability for mixed heavy metals.  相似文献   

12.
An examination was made of the effects of tetrathiomolybdate (TTM), ammonium molybdate (AM), sodium sulphide, and two molybdo amino acids (cysteine-Mo, cysteine-Mo-S) on the distribution of Cu and Zn among proteins in extracts of the livers and kidneys of rats and sheep. Tetrathiomolybdate caused a shift in the chromatographic distribution of Cu from low molecular weight proteins such as metallothionein (MT) to proteins of higher molecular weight (greater than 100,000 daltons). This was not due to polymerization or cross-linking of metallothionein with the latter, but to the formation of protein-TTM complexes that had a strong affinity for Cu. There was a concomitant redistribution of Zn towards proteins of low molecular weight. Pretreatment of high molecular weight proteins from rat liver with TTM greatly increased the capacity of the proteins to remove Cu from MT. When AM or sodium sulphide were added together to extracts of rat liver, changes similar to those induced by TTM were observed in the chromatographic distribution of Cu and Zn. Individually, these compounds had no significant effect on the distribution of the metals. Of the two molybdo amino acids, only cysteine-Mo-S altered the chromatographic distribution of Cu in extracts of rat liver. The redistribution was in the same direction as that induced by TTM, but was not as pronounced.  相似文献   

13.
Primary cultured embryonic cells derived from mice with disrupted metallothionein (MT) I and II genes and from control mice were transformed with a plasmid encoding the simian virus 40 (SV40) large T antigen. The resulting MT-/- and MT+/+ cell strains showed similar cell morphology, cell cycle and no significant differences in glutathione levels or in the activities of glutathione-related enzymes and antioxidant enzymes. The MT-/- cells were more sensitive to Cd than MT+/+ cells, though no increase in the sensitivity to Zn, Cu, Hg or Ni were observed in MT-/- cells. MT+/+ cells accumulated more Cd than MT-/- cells but showed less lesion, suggesting the role of MT induced by Cd in MT+/+ cells as a scavenger of toxic Cd ion. These results suggest a dominant protective role of MT against Cd compared with other metals. SV40-transformed MT-/- cells seem to be a useful tool for the investigation of cellular function of MT.  相似文献   

14.
A mouse hepatocyte cell line selected for growth in 80 microM CdSO4 (Cdr80 cells) was used to test the role of metallothioneins in heavy metal detoxification. The cadmium-resistant (Cdr80) cells have double minute chromosomes carrying amplified copies of the metallothionein-I gene and accumulate ca. 20-fold more metallothionein-I mRNA than unselected cadmium-sensitive (Cds) cells after optimal Cd stimulation. As a consequence, the amount of Cd which inhibits DNA synthesis by 50% is ca. 7.5-fold higher in Cdr80 cells than in Cds cells. Cds and Cdr80 cells were compared in terms of their resistance to other heavy metals. The results indicate that although Zn, Cu, Hg, Ag, Co, Ni, and Bi induce metallothionein-I mRNA accumulation in both Cdr80 and Cds cells, the Cdr80 cells show increased resistance to only a subset of these metals (Zn, Cu, Hg, and Bi). This suggests that not all metals which induce metallothionein mRNA are detoxified by metallothionein and argues against autoregulation of metallothionein genes. Metallothionein-I mRNA is also induced by iodoacetate, suggesting that the regulatory molecule has sensitive sulfhydryl groups.  相似文献   

15.
16.
1. A short-term exposure of adult Wistar rats to Cu (50 μg/ml) and Cd (10.0 μg/ml drinking water) caused significant changes in the subcellular concentrations of Cd, Cu, Zn and metallothionein (MT) in the liver and kidney; the concentrations were close to the physiological values, however.2. To establish a relationship between these changes in the subcellular concentrations of Cd, Cu, Zn and the level of MT in the post-mitochondrial fraction of the liver and kidney, the analytical data (N = 42) were subjected to the multiple regression analysis.3. The analysis showed that MT synthesis in the liver was principally induced by small amounts of Cd (0.32–1.4 μg/g wet wt) whereas in the kidney a level of MT in the post-mitochondrial fraction correlated positively with the renal Cd and Cu, as well as with the level of this protein in the liver.4. The above results together with the positive correlation between the level of MT in the post-mitochondrial fraction and the concentration of Cu in this fraction, as well as the fact that under normal physiological conditions the capacity of MT (β-domain) in the liver and kidney was sufficient to bind 50–100% of the total post-mitochondrial Cu suggest that MT, first induced by small amounts of Cd, may be involved in the metabolism of Cu.  相似文献   

17.
《Inorganica chimica acta》2002,328(1):111-122
The electrochemical oxidation of anodic metal (nickel, copper, zinc and cadmium) in acetonitrile solutions containing N,N′-bis[(4-methylphenyl)sulfonyl]ethylenediamine H2L and an additional nitrogen coligand, such as 1,10-phenanthroline, yielded mixed complexes of general formula [ML(phen)2] (M=Ni, Cu, Zn and Cd). The compounds have been characterized by microanalysis, IR and UV-Vis (Ni, Cu complexes) spectroscopy, FAB mass spectrometry, 1H NMR spectroscopic studies (Zn, Cd complexes) and EPR spectroscopy (Cu and Ni complexes). All compounds have also been characterized by single crystal X-ray diffraction. The molecular structures of these compounds consist of individual monomeric molecules in which the metal atom is in an [MN6] distorted octahedral environment.  相似文献   

18.
19.
The levels of metallothionein (MT), a biomarker of metal exposure, and of cytosolic metals (Zn, Cu, Cd), known as MT inducers, were investigated as variables of age (1 to 8 years) and tissue mass (liver, kidney, brain) of red mullet (Mullus barbatus). Within the age from 1 to 8 years the most significant increase is evident for cytosolic Cd in liver (43-fold) and in kidney (5-fold). MT and essential metals are constant with age or slightly increased. Over the growth period, statistically significant MT and metal increase is evident only between 1 and 6-8 years old specimens, while for Cd in liver and kidney cytosol significant increase already exists at 4 years old specimens. Metal distribution in all tissues follows the order: Zn>Cu>Cd, with even 500-800 times lower Cd levels than essential metal levels. Consequently, MTs follow the levels of essential metals, Zn and Cu, indicating MT involvement in homeostasis of essential metals. In contrast to kidney and brain, hepatic MT levels are not age-dependent. Inclusion of hepatic MT measurements and the associated cytosolic metals will be useful in the assessment of long-term metal effects in demersal fish M. barbatus.  相似文献   

20.
Experiments were carried out to investigate the uptake and accumulation of Zn in rat hepatoma HTC cells, as affected by interfering metals (Cd, Cu), metallothionein synthesis inhibiting compounds (Actinomycin D, cycloheximide) and metallothionein synthesis stimulating compounds (dexamethasone, dibu-cAMP). Cell viability was tested under all experimental conditions by the measurement of LDH leakage, K+ uptake and total cell protein. Determinations of Zn were performed by AAS (total Zn) or by gamma-ray spectrometry (65Zn). Metallothionein analysis was carried out by Cd-saturation tests. The results indicate that cellular responses in rat hepatoma HTC cells with respect to the uptake and accumulation of 65Zn are fully comparable with literature data existing for 65Zn accumulation in rat hepatocytes, under all experimental conditions applied. Cu2+ and dibutyryl-cAMP did not significantly affect rates of 65Zn accumulation. Cd2+, Actinomycin D and cycloheximide reduced 65Zn uptake, but dexamethasone additions resulted in increased 65Zn accumulation in the cells. Effects on 65Zn were shown both in cytosolic and in the membranes/organelles cell fractions. HPLC chromatography in control cells suggested that newly accumulated cytosolic 65Zn was predominantly MT-associated. Dexamethasone-induced 65Zn accumulation could not be related to elevated cellular MT levels, nor were the total cytosolic Zn levels significantly affected. Non-specific attenuations in MT levels (Actinomycin D, cycloheximide and dibu-cAMP) yielded linear relations between cytosolic 65Zn and MT levels, without any change in cytosolic Zn (AAS). Combined addition of Cd and dexamethasone yielded elevated MT levels, but severely reduced total cytosolic Zn and 65Zn concentrations. The results further indicate the non-Zn-specific nature of dexamethasone-action and suggest the relatively easy Zn-complexing and Zn-release of MT. The simultaneous determinations of total cytosolic zinc and cytosolic 65Zn levels showed that the application and sole measurement of radiotracers may yield only one-sided views of what is actually present or occurring in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号