首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: The aim of this study was to investigate the in vivo effects of pravastatin on the development of obesity and diabetes in diet‐induced obese (DIO) mice. Methods and Procedures: We examined food intake, body‐weight changes, visceral white adipose tissue (WAT) adiponectin and resistin levels, and energy metabolism. Results: Treatment with 100 mg/kg/day pravastatin for 28 days decreased diet‐induced weight gain and visceral adiposity. In addition, the weight of the WAT, the triglyceride (TG) contents of the liver and muscles, and the levels of serum insulin improved in the pravastatin‐treated DIO mice. Furthermore, pravastatin treatment changed the WAT adiponectin and resistin mRNA expression and serum levels compared with the controls. Finally, pravastatin treatment increased oxygen consumption and decreased the respiratory quotient (RQ). Discussion: Pravastatin treatment prevents the development of obesity and diabetes in DIO mice. The prevention of obesity may be mediated by increased oxygen consumption and a decrease in the RQ. These results provide novel insights into the use of pravastatin as a therapeutic tool for metabolic syndromes.  相似文献   

2.
3.
Objective: To determine whether the major ovarian factor estrogen modulates peroxisome proliferator‐activated receptor (PPAR) α actions on obesity and to investigate the mechanism by which estrogen regulates PPARα actions. Research Methods and Procedures: Female ovariectomized mice were randomly divided into four groups (n = 8/group). After they were treated with combinations of high fat, fenofibrate (FF), or 17β‐estradiol (E) for 13 weeks, variables and determinants of obesity and lipid metabolism were measured using in vivo and in vitro approaches. Results: When female ovariectomized mice were given a high‐fat diet with either FF or E, body weight gain and white adipose tissue mass were significantly reduced and serum lipid profiles were improved compared with control mice fed a high‐fat diet alone. When mice were concomitantly treated with FF and E, however, E reversed the effects of FF on body weight gain, serum lipid profiles, and hepatic PPARα target gene expression. Consistent with the in vivo data, E not only decreased basal levels of PPARα reporter gene activation but also significantly decreased Wy14,643‐induced luciferase reporter activity. In addition, inhibition of PPARα functions by E did not seem to occur by interfering with the DNA binding of PPARα. Discussion: Our results demonstrate that in vivo and in vitro treatment of estrogen inhibited the actions of FF‐activated PPARα on obesity and lipid metabolism through changes in the expression of PPARα target genes, providing evidence that FF does not regulate obesity in female mice with functioning ovaries.  相似文献   

4.
We investigated whether fenofibrate improves lipid metabolism and obesity in female ovariectomized (OVX) or sham-operated (SO) low density lipoprotein receptor-null (LDLR-null) mice. All mice fed a high-fat diet exhibited increases in serum triglycerides and cholesterol as well as in body weight and white adipose tissue (WAT) mass compared to mice fed a low fat control diet. However, fenofibrate prevented high-fat diet-induced increases in body weight and WAT mass in female OVX LDLR-null mice, but not in SO mice. In addition, administration of fenofibrate reduced serum lipids and hepatic apolipoprotein C-III mRNA while increasing the mRNA of acyl-CoA oxidase in both groups of mice, however, these effects were more pronounced in OVX LDLR-null mice. The results of this study provide first evidence that fenofibrate improves both lipid metabolism and obesity, in part through PPARalpha activation, in female OVX LDLR-null mice.  相似文献   

5.
Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance.  相似文献   

6.
Elevated serum retinol‐binding protein (RBP) concentration has been implicated in the development of insulin resistance and type 2 diabetes. Two series of small molecules have been designed to lower serum levels by reducing secretion of the transthyretin–RBP complex from the liver and enhancing RBP clearance through the kidney. These small molecules were seen to improve glucose and insulin tolerance tests and to reduce body weight gain in mice rendered diabetic through a high fat diet. A proteomics study was conducted to better understand the effects of these compounds in muscle cells, muscle being the primary site for energy expenditure. One lead compound, RTC‐15, is seen to have a significant effect on proteins involved in fat and glucose metabolism. This could indicate that the compound is having a direct effect on muscle tissue to improve energy homeostasis as well as a whole body effect on circulating RBP levels. This newly characterized group of antidiabetic compounds may prove useful in the treatment and prevention of insulin resistance and obesity.  相似文献   

7.
As many individuals worlwide are exposed to arsenic, it is necessary to unravel the role of arsenic in the risk of obesity and diabetes. Therefore, the present study reviewed the effects of arsenic exposure on the risk and potential etiologic mechanisms of obesity and diabetes. It has been suggested that inflammation, oxidative stress, and apoptosis contribute to the pathogenesis of arsenic-induced diabetes and obesity. Though arsenic is known to cause diabetes through different mechanisms, the role of adipose tissue in diabetes is still unclear. This review exhibited the effects of arsenic on the metabolism and signaling pathways within adipose tissue (such as sirtuin 3 [SIRT3]- forkhead box O3 [FOXO3a], mitogen-activated protein kinase [MAPK], phosphoinositide-dependant kinase-1 [PDK-1], unfolded protein response, and C/EBP homologous protein [CHOP10]). Different types of adipokines involved in arsenic-induced diabetes are yet to be elucidated. Arsenic exerts negative effects on the white adipose tissue by decreasing adipogenesis and enhancing lipolysis. Some epidemiological studies have shown that arsenic can promote obesity. Nevertheless, few studies have indicated that arsenic may induce lipodystrophy. Arsenic multifactorial effects include accelerating birth and postnatal weight gains, elevated body fat content, glucose intolerance, insulin resistance, and increased serum lipid profile. Arsenic also elevated cord blood and placental, as well as postnatal serum leptin levels. The data from human studies indicate an association between inorganic arsenic exposure and the risk of diabetes and obesity. However, the currently available evidence is insufficient to conclude that low-moderate dose arsenic is associated with diabetes or obesity development. Therefore, more investigations are needed to determine biological mechanisms linking arsenic exposure to obesity and diabetes.  相似文献   

8.
The prevalence of obesity is increasing globally, and obesity is a major risk factor for metabolic diseases such as type 2 diabetes. Previously, we reported that oral administration of homobrassinolide (HB) to healthy rats triggered a selective anabolic response that was associated with lower blood glucose. Therefore, the aim of this study was to evaluate the effects of HB administration on glucose metabolism, insulin sensitivity, body composition, and gluconeogenic gene expression profiles in liver of C57BL/6J high-fat diet-induced obese mice. Acute oral administration of 50-300 mg/kg HB to obese mice resulted in a dose-dependent decrease in fasting blood glucose within 3 h of treatment. Daily chronic administration of HB (50 mg/kg for 8 wk) ameliorated hyperglycemia and improved oral glucose tolerance associated with obesity without significantly affecting body weight or body composition. These changes were accompanied by lower expression of two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase), and increased phosphorylation of AMP-activated protein kinase in the liver and muscle tissue. In vitro, HB treatment (1-15 μM) inhibited cyclic AMP-stimulated but not dexamethasone-stimulated upregulation of PEPCK and G-6-Pase mRNA levels in H4IIE rat hepatoma cells. Among a series of brassinosteroid analogs related to HB, only homocastasterone decreased glucose production in cell culture significantly. These results indicate the antidiabetic effects of brassinosteroids and begin to elucidate their putative cellular targets both in vitro and in vivo.  相似文献   

9.
Zinc (Zn) has been implicated in altered adipose metabolism, insulin resistance and obesity. The objective of this study was to investigate the effects dietary Zn deficiency and supplementation on adiposity, serum leptin and fatty acid composition of adipose triglycerides and phospholipid in C57BL/6J mice fed low-fat (LF) or high-fat (HF) diets for a 16 week period. Weanling C57BL/6J mice were fed LF (16% kcal from soybean oil) or HF (39% kcal from lard and 16% kcal from soybean oil) diets containing 3, 30 or 150 mg Zn/kg diet (ZD = Zn-deficient, ZC = Zn control and ZS = Zn-supplemented, respectively). HF-fed mice had higher fat pad weights and lower adipose Zn concentrations than the LF-fed mice. The ZD and ZS groups had a reduced content of fatty acids in adipose triglycerides compared to the ZC group, suggesting that zinc status may influence fatty acid accumulation in adipose tissue. Serum leptin concentration was positively correlated with body weight and body fat, and negatively correlated with adipose Zn concentration. Dietary fat, but not dietary Zn, altered the fatty acid composition of adipose tissue phospholipid and triglyceride despite differences in Zn status assessed by femur Zn concentrations. The fatty acid profile of adipose triglycerides generally reflected the diets. HF-fed mice had a higher percentage of C20:4 n-6, elevated ratio of n-6/n-3, lower ratio of PUFA/SAT and reduced percentage of total n-3 fatty acids in adipose phospholipid, a fatty acid profile associated with obesity-induced risks for insulin resistance and impaired glucose transport. In summary, the reduced adipose Zn concentrations in HF-fed mice and the negative correlation between serum leptin and adipose Zn concentrations support an interrelationship among obesity, leptin and Zn metabolism.  相似文献   

10.
11.
Body fat, insulin resistance, and type 2 diabetes are often linked together, but the molecular mechanisms that unify their association are poorly understood. Wnt signaling regulates adipogenesis, and its altered activity has been implicated in the pathogenesis of type 2 diabetes and metabolic syndrome. LRP6(+/-) mice on a high fat diet were protected against diet-induced obesity and hepatic and adipose tissue insulin resistance compared with their wild-type (WT) littermates. Brown adipose tissue insulin sensitivity and reduced adiposity of LRP6(+/-) mice were accounted for by diminished Wnt-dependent mTORC1 activity and enhanced expression of brown adipose tissue PGC1-α and UCP1. LRP6(+/-) mice also exhibited reduced endogenous hepatic glucose output, which was due to diminished FoxO1-dependent expression of the key gluconeogenic enzyme glucose-6-phosphatase (G6pase). In addition, in vivo and in vitro studies showed that loss of LRP6 allele is associated with increased leptin receptor expression, which is a likely cause of hepatic insulin sensitivity in LRP6(+/-) mice. Our study identifies LRP6 as a nutrient-sensitive regulator of body weight and glucose metabolism and as a potential target for pharmacological interventions in obesity and diabetes.  相似文献   

12.
Brain melanocortin system (MC-system) participates in regulation of energy homeostasis. Dominant mutation yellow of the Agouti gene leads to the hyperphagia, obesity and type 2 diabetes. Stress is known to inhibit food intake and body weight. The aim of the work was to study effects of repeating emotional stress on food intake and lipid-carbohydrate metabolism in Ay-mice. Male mice of C57B1/6J strain predisposed to the obesity (Ay/a-genotype) and normal (a/a-genotype) were used. In control group food intake, body weight and blood levels of insulin and leptin were increased in Ay/a-mice as compared to a/a-mice. Repeating emotional stress (30 min restraint 3 times a week for 5 weeks) did not alter food intake and indices of lipid-carbohydrate metabolism in a/a-mice and decreased food intake, body weight and blood levels of insulin and leptin in Ay/a-mice. Insulin and leptin blood levels were the same in Ay/a- and a/a-mice on 5 week of treatment. The stress increased basal and stress-induced concentrations of corticosterone to an equal degree in Ay/a- and a/a-mice. Thus, light repeating emotional stress hampered development of obesity and 2 type diabetes in the mice with the Agouti yellow mutation.  相似文献   

13.
Hwang B  Wu P  Harris RA 《The FEBS journal》2012,279(10):1883-1893
Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency.  相似文献   

14.
Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko) with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism.  相似文献   

15.
A perturbation of zinc metabolism has been noted in numerous laboratory animals with diabetes and obesity. The effects of zinc supplementation on body fat deposition in two types of experimental obese mice: genetically obese (ob/ob) mice and high-fat diet-induced ICR obese (HF) mice were investigated in this study. Their lean controls were +/? mice, and ICR on basal diet, respectively. The mice in the zinc-supplemented groups were administered 200 mg/kg zinc in their diets for 6 wk. Both the ob/ob mice and the HF mice, that were fed a diet containing a marginal zinc dosage (4–6 mg/kg), had lower zinc levels in their serum and carcass, and higher body fat content than their respective lean controls (p<0.01). After zinc supplementation, ob/ob mice and the HF mice significnatly (p<0.05) increased their body fat by 49.4% and 18.9%, respectively. This study revealed that body fat deposition can be aggravated by zinc supplementation in both types of obese mice. Zinc may be associated with the energy homeostasis of obesity, via its interaction with dietary fat consumption.  相似文献   

16.
Brown adipose tissue (BAT) plays a key role in energy expenditure through its thermogenic function, making its activation a popular target to reduce obesity. We recently reported that male mice housed at thermoneutrality with uncoupling protein 1 (UCP1) deficiency had increased weight gain and glucose intolerance, but eicosapentaenoic acid (EPA) ameliorated these effects.Whether female mice respond similarly to lack of UCP1 and to EPA remains unknown. We hypothesize that the effects of EPA on BAT activation are independent of UCP1 expression. We used female wild type (WT) and UCP1 knockout (KO) mice housed at thermoneutrality (30°C) as an obesogenic environment and fed them high fat (HF) diets with or without EPA for up to 14 weeks. Body weight (BW), body composition, and insulin and glucose tolerance tests were performed during the feeding trial. At termination, serum and BAT were harvested for further analyses. Mice in the KO-EPA group had significantly lower BW than KO-HF mice. In addition, KO-HF mice displayed significantly impaired glucose tolerance compared to their WT-HF littermates. However, EPA significantly enhanced glucose clearance in the KO mice compared to KO-HF mice. Protein levels of the mitochondrial cytochrome C oxidase subunits I, II, and IV were significantly lower in KO mice compared to WT. Our findings support that ablation of UCP1 is detrimental to energy metabolism of female mice in thermoneutral conditions. However, unexpectedly, EPA's protective effects against diet-induced obesity and glucose intolerance in these mice were independent of UCP1.  相似文献   

17.
目的:本文旨在探讨动物体内水平驱动蛋白-1在脂肪组织糖、脂代谢中的作用。方法:通过Cre/Loxp重组系统构建脂肪组织特异性敲除驱动蛋白-1的小鼠模型,在生理水平观察驱动蛋白-1表达缺陷对小鼠糖代谢、脂代谢和脂肪因子分泌的影响。结果:与六月龄对照组小鼠相比,同月龄驱动蛋白-1敲除小鼠的体重、脂肪组织重量和空腹血糖水平没有显著差异,但是其血清胰岛素水平显著升高;使用葡萄糖耐量试验(GTT)和胰岛素耐量实验(ITT)对小鼠的糖代谢水平进行评估,结果显示驱动蛋白-1敲除小鼠表现为葡萄糖不耐受、胰岛素不耐受;进一步血清检测显示驱动蛋白-1敲除小鼠表现为高甘油三酯血症和血清脂联素水平降低。结论:驱动蛋白-1在脂肪组织中参与调节糖、脂代谢过程,其表达或功能障碍是2型糖尿病等代谢性疾病的一个重要的发病因素。  相似文献   

18.
Leptin, a polypeptide hormone produced mainly by adipocytes, has diverse effects in both the brain and peripheral organs, including suppression of feeding. Other than mediating leptin transport across the blood-brain barrier, the role of the endothelial leptin receptor remains unclear. We recently generated a mutant mouse strain lacking endothelial leptin receptor signaling, and showed that there is an increased uptake of leptin by brain parenchyma after its delivery by in situ brain perfusion. Here, we tested the hypothesis that endothelial leptin receptor mutation confers partial resistance to diet-induced obesity. These ELKO mice had similar body weight and percent fat as their wild-type littermates when fed with rodent chow, but blood concentrations of leptin were significantly elevated. In response to a high-fat diet, wild-type mice had a greater gain of body weight and fat than ELKO mice. As shown by metabolic chamber measurement, the ELKO mice had higher oxygen consumption, carbon dioxide production, and heat dissipation, although food intake was similar to that of the wild-type mice and locomotor activity was even reduced. This indicates that the partial resistance to diet-induced obesity was mediated by higher metabolic activity in the ELKO mice. Since neuronal leptin receptor knockout mice show obesity and diabetes, the results suggest that endothelial leptin signaling shows opposite effects from that of neuronal leptin signaling, with a facilitatory role in diet-induced obesity.  相似文献   

19.
Heme oxygenase (HO) is the rate-limiting enzyme in the metabolism of heme-releasing bioactive molecules carbon monoxide (CO), biliverdin, and iron, each with beneficial cardiovascular actions. Biliverdin is rapidly reduced to bilirubin, a potent antioxidant, by the enzyme biliverdin reductase, and iron is rapidly sequestered by ferritin in the cell. Several studies have demonstrated that HO-1 induction can attenuate the development of hypertension as well as lower blood pressure in established hypertension in both genetic and experimental models. HO-1 induction can also reduce target organ injury and can be beneficial in cardiovascular diseases, such as heart attack and stroke. Recent studies have also identified a beneficial role for HO-1 in the regulation of body weight and metabolism in diabetes and obesity. Chronic HO-1 induction lowers body weight and corrects hyperglycemia and hyperinsulinemia. Chronic HO-1 induction also modifies the phenotype of adipocytes in obesity from one of large, cytokine producing to smaller, adiponectin producing. Finally, chronic induction of HO-1 increases oxygen consumption, CO(2), and heat production and activity in obese mice. This review will discuss the current understanding of the actions of the HO system to lower blood pressure and body weight and how HO or its metabolites may be ideal candidates for the development of drugs that can both reduce blood pressure and lower body weight.  相似文献   

20.
A small synthetic peptide sequence of human growth hormone (hGH), AOD-9401, has lipolytic and antilipogenic activity similar to that of the intact hormone. Here we report its effect on lipid metabolism in rodent models of obesity and in human adipose tissue to assess its potential as a pharmacological agent for the treatment of human obesity. C57BL/6J (ob/ob) mice were orally treated with either saline (n = 8) or AOD-9401 (n = 10) for 30 days. From day 16 onward, body weight gain in AOD-9401-treated animals was significantly lower than that of saline-treated controls. Food consumption did not differ between the two groups. Analyses of adipose tissue ex vivo revealed that AOD-9401 significantly reduced lipogenic activity and increased lipolytic activity in this tissue. Increased catabolism was also reflected in an acute increase in energy expenditure and glucose and fat oxidation in ob/ob mice treated with AOD-9401. In addition, AOD-9401 increased in vitro lipolytic activity and decreased lipogenic activity in isolated adipose tissue from obese rodents and humans. Together, these findings indicate that oral administration of AOD-9401 alters lipid metabolism in adipose tissue, resulting in a reduction of weight gain in obese animals. The marked lipolytic and antilipogenic actions of AOD-9401 in human adipose tissues suggest that this small synthetic hGH peptide has potential in the treatment of human obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号