首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evolving functions of endothelial cells in inflammation   总被引:2,自引:0,他引:2  
Inflammation is usually analysed from the perspective of tissue-infiltrating leukocytes. Microvascular endothelial cells at a site of inflammation are both active participants in and regulators of inflammatory processes. The properties of endothelial cells change during the transition from acute to chronic inflammation and during the transition from innate to adaptive immunity. Mediators that act on endothelial cells also act on leukocytes and vice versa. Consequently, many anti-inflammatory therapies influence the behaviour of endothelial cells and vascular therapeutics influence inflammation. This Review describes the functions performed by endothelial cells at each stage of the inflammatory process, emphasizing the principal mediators and signalling pathways involved and the therapeutic implications.  相似文献   

2.
3.
Choi YK  Kim KW 《The FEBS journal》2008,275(9):2338-2353
Interactions between astrocytes and blood vessels are essential for the formation and maintenance of the blood-neural barrier (BNB). Astrocyte-derived A-kinase anchor protein 12 (AKAP12) influences BNB formation, but the mechanism of regulation of BNB functions by AKAP12 is not fully understood. We have defined a new pathway of barriergenesis in human retina microvascular endothelial cells (HRMECs) involving astrocytic AKAP12. Treatment of HRMECs with conditioned media from AKAP12-overexpressing astrocytes reduced phosphorylation of protein kinase Czeta (PKCzeta), decreased the levels of vascular endothelial growth factor (VEGF) mRNA and protein, and increased thrombospondin-1 (TSP-1) levels, which led to antiangiogenesis and barriergenesis. Transfection of a small interference RNA targeting PKCzeta decreased VEGF levels and increased TSP-1 levels in HRMECs. Rho is a putative downstream signal of PKCzeta, and inhibition of Rho kinase with a specific inhibitor, Y27632, decreased VEGF levels and increased TSP-1 levels. We therefore suggest that AKAP12 in astrocytes differentially regulates the expression of VEGF and TSP-1 via the inhibition of PKCzeta phosphorylation and Rho kinase activity in HRMECs.  相似文献   

4.
Although lipids are largely involved in cardiovascular physiopathology, the lipid metabolism in endothelial cells remains largely unknown. Human umbilical vein endothelial cells (HUVECs) were used to investigate the metabolism of complex lipids. The membrane phospholipid homeostasis results from both de novo synthesis and remodelling that ensures the fine tuning of the phospholipid fatty acid composition. Using [(3)H]-glycerol and phosphoderivatives we showed the efficiency of glycerolipid synthesis from glycerol (0.9 nmol h(-1) mg proteins(-1)), but not from its phosphorylated form suggesting the requirement of a functional glycerol kinase in HUVECs. Conversely, the synthesis of triacylglycerols was very low (less than 5% of phospholipid synthesis). The incorporation rate of fatty acids into phospholipids showed that there is a specific fate for each fatty acid in respect to its chain length and saturation level. Moreover in steady state condition, increasing the long chain omega3 polyunsaturated fatty acids in the medium resulted in an increased polyunsaturated/saturated ratio in phospholipids (from 0.42 to 0.63). [(14)C]O(2) was produced form either [(14)C]-glucose or [(14)C]-palmitate indicating the functionality of the oxidation pathways, although beta-oxidation was less efficient than glucose oxidation. The endothelial cell lipid metabolism involves conventional pathways, with functional rates largely slower than in hepatocytes or in cardiomyocytes.  相似文献   

5.
人血管内皮细胞中腺苷代谢的定量研究   总被引:4,自引:0,他引:4  
目的:通过对人脐静脉内皮细胞腺苷分泌进行定性及定量研究,了解人类血管内皮细胞的腺苷代谢及机制.方法:收集并测定不同干预下细胞柱流出液中分离的人脐静脉内皮细胞分泌的腺苷量.结果:在无干预、抑制腺苷激酶及去氨酶、抑制细胞膜腺苷转运情况下,人脐静脉内皮细胞腺苷分泌率分别为13.5±7.1 pmol·min-1·mg-1、32.5±14.2 pmol·min-1·mg-1和20.8±15.7 pmol·min-1·mg-1.结论:人类血管内皮细胞内腺苷合成高于胞外,而细胞膜腺苷转运被抑制后的腺苷分泌率反而高于生理状态下分泌率,则表明腺苷在胞内分解代谢非常迅速,使部分腺苷反由胞外扩散入胞内.  相似文献   

6.

Background

Human Bronchial epithelial cells (hu-BEC) have been claimed to play a significant role in the pathogenesis of chronic inflammatory airway diseases like COPD. In this context IL-8 and GM-CSF have been shown to be key cytokines. Some antibiotics which are routinely used to treat lower respiratory tract infections have been shown to exert additional immunomodulatory or anti-inflammatory effects. We investigated whether these effects can also be detected in hu-BEC.

Methods

Hu-BEC obtained from patients undergoing lung resections were transferred to air-liquid-interface (ALI) culture. These cultures were incubated with cefuroxime (CXM, 10-62.5 mg/l), azithromycin (AZM, 0.1-1.5 mg/l), levofloxacin (LVX, 1-8 mg/l) and moxifloxacin (MXF, 1-16 mg/l). The spontaneous and TNF-α (10 ng/ml) induced expression and release of IL-8 and GM-CSF were measured using PCR and ELISA in the absence or presence of these antibiotics.

Results

The spontaneous IL-8 and GM-CSF release was significantly reduced with MXF (8 mg/l) by 37 ± 20% and 45 ± 31%, respectively (both p < 0.01). IL-8 release in TNF-α stimulated hu-BEC decreased by 16 ± 8% (p < 0.05) with AZM (1.5 mg/l). With MXF a concentration dependent decrease of IL-8 release was noted up to 39 ± 7% (p < 0.05). GM-CSF release from TNF-α stimulated hu-BEC was maximally decreased by 35 ± 24% (p < 0.01) with MXF (4 mg/l).

Conclusion

Using ALI cultures of hu-BEC we observed differential effects of antibiotics on spontaneous and TNF-α induced cytokine release. Our data suggest that MXF and AZM, beyond bactericidal effects, may attenuate the inflammatory process mediated by hu-BEC.  相似文献   

7.
Voltage-gated sodium channel (VGSC) activity has previously been reported in endothelial cells (ECs). However, the exact isoforms of VGSCs present, their mode(s) of action, and potential role(s) in angiogenesis have not been investigated. The main aims of this study were to determine the role of VGSC activity in angiogenic functions and to elucidate the potentially associated signaling mechanisms using human umbilical vein endothelial cells (HUVECs) as a model system. Real-time PCR showed that the primary functional VGSC α- and β-subunit isoforms in HUVECs were Nav1.5, Nav1.7, VGSCβ1, and VGSCβ3. Western blots verified that VGSCα proteins were expressed in HUVECs, and immunohistochemistry revealed VGSCα expression in mouse aortic ECs in vivo. Electrophysiological recordings showed that the channels were functional and suppressed by tetrodotoxin (TTX). VGSC activity modulated the following angiogenic properties of HUVECs: VEGF-induced proliferation or chemotaxis, tubular differentiation, and substrate adhesion. Interestingly, different aspects of angiogenesis were controlled by the different VGSC isoforms based on TTX sensitivity and effects of siRNA-mediated gene silencing. Additionally, we show for the first time that TTX-resistant (TTX-R) VGSCs (Nav1.5) potentiate VEGF-induced ERK1/2 activation through the PKCα-B-RAF signaling axis. We postulate that this potentiation occurs through modulation of VEGF-induced HUVEC depolarization and [Ca(2+)](i). We conclude that VGSCs regulate multiple angiogenic functions and VEGF signaling in HUVECs. Our results imply that targeting VGSC expression/activity could be a novel strategy for controlling angiogenesis.  相似文献   

8.
Hyaluronic acid (HA), a nonsulfated glycosaminoglycan, regulates cell adhesion and migration. Small HA fragments (3-25 disaccharide units) induce neovascularization. We investigated the effect of HA and a HA fragment (10-15 disaccharide units, F1) on primary human endothelial cells (ECs). Human pulmonary ECs (HPAEC) and lung microvessel ECs (HMVEC-L) bound HA (K(d) approximately 1 and 2.3 nm, respectively) and expressed 17,780 and 16,690 HA binding sites, respectively. Both ECs showed HA-mediated cell adhesion; however, HMVEC-L was 1.5-fold better. Human umbilical vein ECs neither bound HA nor showed HA-mediated adhesion. All three ECs expressed CD44 ( approximately 110 kDa). The expression of receptor for HA-mediated motility (RHAMM) (approximately 80 kDa) was the highest in HMVEC-L, followed by HPAEC and human umbilical vein ECs. RHAMM, not CD44, bound HA in all three ECs. F1 was better than HA and stimulated a 2. 5- and 1.8-fold mitogenic response in HMVEC-L and HPAEC, respectively. Both HA and F1 induced tyrosine phosphorylation of p125(FAK), paxillin, and p42/44 ERK in HMVEC-L and HPAEC, which was blocked by an anti-RHAMM antibody. These results demonstrate that RHAMM is the functional HA receptor in primary human ECs. Heterogeneity exists among primary human ECs of different vascular origins, with respect to functional HA receptor expression and function.  相似文献   

9.
10.
Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy.  相似文献   

11.
Long-term culture of human endothelial cells   总被引:9,自引:0,他引:9  
Summary Human umbilical vein endothelial cells can be grown in vitro for 28 passages (CPDL 58) in Medium 199 supplemented with newborn bovine serum and a partially purified growth factor derived from bovine brain. Newborn bovine serum is superior to fetal bovine serum for the proliferation of human umbilical vein endothelial cells seeded at low density in the presence of the growth factor. The endothelial cells, which can be passaged every 7 to 10 d at a 1-to-5 split ratio, retain their morphological and biochemical characteristics. The proliferation of cells seeded at low density (103/cm2) is proportional to the concentration of the growth factor present in the medium. The growth factor, which has an isoelectric point between 5.0 and 5.5, can support cell proliferation at reduced serum concentrations; half-maximal growth is achieved in medium containing the growth factor and 3% serum. The brain endothelial cell growth factor does not stimulate DNA synthesis significantly in cultures of human skin fibroblasts. This research was supported by grants from the U.S. Public Health Service (AG 01732, HL 16387, and HL 07080), the Cystic Fibrosis Foundation, and the New York and American Heart Associations. Victor B. Hatcher is an Established Fellow of the New York Heart Association and a recipient of the Ann Weinberg Cystic Fibrosis Research Scholarship Award.  相似文献   

12.

Background

The efficacy of Phosphodiesterase 5 (PDE5) inhibitors to re-establish endothelial function is reduced in diabetic patients. Recent evidences suggest that therapy with PDE5 inhibitors, i.e. sildenafil, may increase the expression of nitric oxide synthase (NOS) proteins in the heart and cardiomyocytes. In this study we analyzed the effect of sildenafil on endothelial cells in insulin resistance conditions in vitro.

Methodology/Principal Findings

Human umbilical vein endothelial cells (HUVECs) were treated with insulin in presence of glucose 30 mM (HG) and glucosamine 10 mM (Gluc-N) with or without sildenafil. Insulin increased the expression of PDE5 and eNOS mRNA assayed by Real time-PCR. Cytofluorimetric analysis showed that sildenafil significantly increased NO production in basal condition. This effect was partially inhibited by the PI3K inhibitor LY 294002 and completely inhibited by the NOS inhibitor L-NAME. Akt-1 and eNOS activation was reduced in conditions mimicking insulin resistance and completely restored by sildenafil treatment. Conversely sildenafil treatment can counteract this noxious effect by increasing NO production through eNOS activation and reducing oxidative stress induced by hyperglycaemia and glucosamine.

Conclusions/Significance

These data indicate that sildenafil might improve NOS activity of endothelial cells in insulin resistance conditions and suggest the potential therapeutic use of sildenafil for improving vascular function in diabetic patients.  相似文献   

13.
Ion channels in human endothelial cells.   总被引:4,自引:0,他引:4  
Ion channels were studied in human endothelial cells from umbilical cord by the patch clamp technique in the cell attached mode. Four different types of ion channels were recorded: i) potassium channel current that rectifies at positive potentials in symmetrical potassium solutions (inward rectifier); ii) low-conductance non-selective cation channel with a permeability ratio K:Na:Ca = 1:0.9:0.2; iii) high-conductance cation-selective channel that is about 100 times more permeable for calcium than for sodium or potassium; iv) high-conductance potassium channel with a permeability ratio K:Na = 1:0.05. The extrapolated reversal potential of the inwardly rectifying current was near to the potassium equilibrium potential. The slope conductance decreased from 27 pS in isotonic KCl solution to 7 pS with 5.4 mmol/l KCl and 140 mmol/l NaCl in the pipette but 140 mmol/l KCl in the bath. The low-conductance non-selective cation channel showed a single-channel conductance of 26 pS with 140 mmol/l Na outside, 28 pS with 140 mmol/l K outside, and rectified in inward direction in the presence of Ca (60 mmol/l Ca, 70 mmol/l Na, 2.7 mmol/l K in the pipette) at negative potentials. The current could be observed with either chloride or aspartate as anion. The high-conductance non-selective channel did not discriminate between Na and K. The single-channel conductance was about 50 pS. The extrapolated reversal potential was more positive than +40 mV (140 K or 140 Na with 5 Ca outside). Both the 26 and 50 pS channel showed a run-down, and they rapidly disappeared in excised patches. The high-conductance potassium channel with a single-channel conductance of 170 pS was observed only rarely. It reversed near the expected potassium equilibrium potential. The 26 pS channel could be stimulated with histamine and thrombin from outside in the cell-attached mode. Both the 26 pS as well as the 50 pS channel can mediate calcium flux into the endothelial cell.  相似文献   

14.
Long-term culture of human endothelial cells   总被引:9,自引:0,他引:9  
Human umbilical vein endothelial cells can be grown in vitro for 28 passages (CPDL 58) in Medium 199 supplemented with newborn bovine serum and a partially purified growth factor derived from bovine brain. Newborn bovine serum is superior to fetal bovine serum for the proliferation of human umbilical vein endothelial cells seeded at low density in the presence of the growth factor. The endothelial cells, which can be passaged every 7 to 10 d at a 1-to-5 split ratio, retain their morphological and biochemical characteristics. The proliferation of cells seeded at low density (10(3)/cm2) is proportional to the concentration of the growth factor present in the medium. The growth factor, which has an isoelectric point between 5.0 and 5.5, can support cell proliferation at reduced serum concentrations; half-maximal growth is achieved in medium containing the growth factor and 3% serum. The brain endothelial cell growth factor does not stimulate DNA synthesis significantly in cultures of human skin fibroblasts.  相似文献   

15.
16.
Serial propagation of human endothelial cells in vitro   总被引:10,自引:1,他引:9       下载免费PDF全文
Human umbilical vein (HUV) endothelial cells were grown for 15 to 21 passages at a split ratio of 1:5 (at least 27 population doublings) on a human fibronectin (HFN) matrix in Medium 199 supplemented with fetal bovine serum (FBS) and endothelial-cell growth factor (ECGF). This system also permitted the growth of HUV endothelial cells at cell densities as low as 1.25 cells/cm2. In addition to delaying the premature senescence of HUV endothelial cells, ECGF also reduced the serum requirement for low-density HUV endothelial-cell growth; 2.5% serum and ECGF yields half-maximum growth as compared to high serum controls. Significant HUV endothelial-cell growth was also observed in medium supplemented with either ovine hypophysectomized (HYPOX) serum, plasma-derived serum (PDS), or HYPOX-PDS in the presence of ECGF, suggesting that neither the pituitary nor the platelet contributes to HUV endothelial-cell growth.  相似文献   

17.
Oxytocin either increases or inhibits cell growth in different cell subtypes. We tested here the effect of oxytocin on cell proliferation and migration of human dermal microvascular endothelial cells (HMEC) and tumor-associated endothelial cells purified from human breast carcinomas (B-TEC). Oxytocin receptors were expressed in both cell subtypes at mRNA and protein levels. Through oxytocin receptor, oxytocin (1 nmol/L-1 mumol/L) significantly increased cell proliferation and migration in both HMEC and B-TEC, and addition of a selective oxytocin antagonist fully reverted these effects. To verify whether a different expression of adhesion molecule-related genes could be responsible for the oxytocin-induced cell migration, untreated and treated cells were compared applying a microarray technique. In HMEC, oxytocin induced the overexpression of the matrix metalloproteinase (MMP)-17, cathepsin D, and integrin beta(6) genes. In B-TEC, oxytocin significantly switched on the gene profile of some MMP (MMP-11 and MMP-26) and of integrin beta(6). The up-regulation of the integrin beta(6) gene could be involved in the oxytocin-induced cell growth, because this subunit is known to determine activation of mitogen-activated protein kinase-extracellular signal-regulated kinase 2, which is involved in the oxytocin mitogenic effect. In B-TEC, oxytocin also increased the expression of caveolin-1 at gene and protein levels. Because oxytocin receptor localization within caveolin-1-enriched membrane domains is necessary for activation of the proliferative (instead of the inhibitory) response to oxytocin, its enhanced expression can be involved in the oxytocin-induced B-TEC growth as well. Altogether, these data indicate that oxytocin contributes to cell motility and growth in HMEC and B-TEC.  相似文献   

18.
Bacterial adherence to human endothelial cells   总被引:3,自引:0,他引:3  
The adult respiratory distress syndrome (ARDS) is frequently caused by exposure of the lung endothelium to circulating endotoxin (lipopolysaccharide, LPS) and pulmonary infections frequently develop during the course of ARDS. The present studies demonstrate that LPS and interleukin 1 (IL-1, a mediator released by endothelial cells after exposure to LPS) enhance the adherence of Staphylococcus aureus to human umbilical vein endothelial cells. gamma-Interferon, another mediator that induces expression of some cell surface antigens on endothelial cells, had no effect on bacterial adherence. The adherence of bacteria to endothelium was increased by prior opsonization of the bacteria with fresh human serum and was reduced by prior absorption of the serum with bacteria before the use of the serum for opsonization. The capacity of LPS to increase bacterial adherence was time dependent and was maximally expressed after 6 h of exposure; it was blocked by exposure of endothelial cells to LPS in the presence of reduced temperature or dactinomycin (Actinomycin D). These observations suggest that circulating LPS not only can trigger the development of ARDS but also may predispose the lung to the development of pulmonary infections by increasing adherence of bacteria to endothelium.  相似文献   

19.
Intermediate-sized filaments of human endothelial cells.   总被引:15,自引:0,他引:15       下载免费PDF全文
Human endothelial cells prepared from unbilical cords are characterized in parallel by electron microscopy and indirect immunofluorescence microscopy using specific antibodies against different classes of intermediate-sized filaments. The strongly developed, loose bundles of intermediate-sized filaments typically found in these cells are not decorated by antibodies against prekeratin or antibodies against smooth muscle desmin. They are, however, strongly decorated by antibodies directed against murine "vimentin," i.e., the 57,000 mol wt polypeptide which is the major protein of the intermediate-sized filaments predominant in various cells of mesenchymal origin. Cytoskeletal preparations greatly enriched in intermediate-sized filaments show the enrichment of a polypeptide band comigrating with murine vimentin. This shows that the intermediate-sized filaments that are abundant in human endothelial cells are predominantly of the vimentin type and can be demonstrated by their cross-reaction with the vimentin of rodents. These data also strengthen the evidence for several subclasses of intermediate-sized filaments, which can be distinguished by immunological procedures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号