首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of four antitumor azolato-bridged dinuclear platinum(II) complexes, [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-azolato)](2+), with calf thymus DNA were monitored dose- and time-dependently, by using circular dichroism. Complexes 1-4 reacted with DNA via a two-step interaction that comprised a prompt diffusion-controlled reaction, which induced a B- to C-form transition, and a relatively slow temperature-dependent reaction.  相似文献   

2.
The aquation and subsequent reactions of the dinuclear Pt antitumor complexes [{trans-PtCl(NH(3))(2)}(2)(mu-NH(2)(CH(2))(6)NH(2))](2+) (1,1/t,t) and [{cis-PtCl(NH(3))(2)}(2)(mu-NH(2)(CH(2))(6)NH(2))](2+) (1,1/c,c) in 15 mM perchlorate, acetate or phosphate solutions were followed at 298 K by [(1)H,(15)N] HSQC 2D NMR spectroscopy. Rate and equilibrium constants for the initial reversible aquation and the subsequent reversible reaction with phosphate or acetate are reported. The rate constant for the first aquation step is two-fold lower for 1,1/c,c than 1,1/t,t but the anation rate constants are similar so that the equilibrium lies further towards the chloro form for the 1,1/c,c compound. A pK (a) value of 6.01+/-0.03 was determined for the diaquated species [{cis-Pt(NH(3))(2)(H(2)O)}(2)(mu-NH(2)(CH(2))(6)NH(2))](4+) (1,1/c,c-3) which is 0.4 units higher than that of the 1,1/t,t compound. The rate constants for the binding of acetate and phosphate to 1,1/t,t are similar, but the rate constant for the reverse reaction is close to ten-fold higher in the case of phosphate so that equilibrium conditions are attained more rapidly (12 h compared with 64 h). On the other hand, for 1,1/c,c the rate constants for the forward and reverse reactions with acetate and phosphate are quite similar so that equilibrium conditions are reached very slowly (80-100 h) and a greater proportion of phosphate-bound species are present. The reduced lability of the bound phosphate for 1,1/c,c is attributed to the formation of a macrochelate phosphate-bridged species which was characterized by (31)P NMR and ESI-MS. The speciation profiles of 1,1/t,t and 1,1/c,c under physiological conditions are explored.  相似文献   

3.
4.
The cytotoxic dinuclear platinum(II) complexes [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-pz)](NO(3))(2) (pz=pyrazolate) (1) and [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-1,2,3-ta-N1,N2)](NO(3))(2) (1,2,3-ta=1,2,3-triazolate) (2), were allowed to react with the hairpin-stabilized double-stranded oligonucleotide d(TATGGCATT(4)ATGCCATA), to determine the amounts of intrastrand and interstrand DNA adducts. The reaction kinetics was investigated by reversed-phase HPLC, and the resulting products were analyzed using mass spectroscopy combined with enzymatic digestion, and Maxam-Gilbert sequencing. The reaction of 1 results in the formation of the 1,2-intrastrand d(GG) adduct as the major final product. The two most abundant products of 2 were identified as isomeric 1,2-intrastrand d(GG) adducts differing probably in platinum coordination to the triazole ring. No GG-interstrand crosslinks were detected with either compound. d(GGC)-d(GCC) sequences of DNA do thus not appear to represent significant targets for forming interstrand crosslinks with either 1 or 2.  相似文献   

5.
Multinuclear Pt(II) complexes represent a novel class of antitumor agents. In this work, a dinuclear monofunctional Pt(II) complex {[cis-Pt(NH(3))(2)Cl](2)(4,4'-methylenedianiline)}(NO(3))(2) (1) was synthesized and characterized by (1)H NMR, electrospray mass spectrometry, and elemental analysis. The 2D [(1)H,(15)N] heteronuclear single quantum coherence NMR spectra of (15)N-labeled 1 revealed that the cationic core of this water-soluble complex hardly hydrolyzes in aqueous solution and reacts very slowly with glutathione. Hydrolysis appears not to be an essential step for the formation of Pt-guanosine-5'-monophosphate (5'-GMP) or Pt-DNA adducts because the complex can react readily with 5'-GMP and partially transform B-DNA into its Z form. Such properties are desired to achieve the goal of enhancing cytotoxicity and lowering side effects of Pt(II) complexes. In fact, complex 1 is highly cytotoxic against the murine leukemia (P-388) and the human non-small-cell lung cancer (A-549) cell lines, and it is more cytotoxic than cisplatin at most concentrations tested.  相似文献   

6.
The pH- and time-dependent reaction of the anticancer drug carboplatin, [Pt(cbdca-kappa(2)O,O')(NH(3))(2)] (cbdca=cyclobutane-1,1-dicarboxylate), with the tripeptides H-glyglymet-OH (glycylglycyl-L-methionine) and Ac-glyglymet-OH at 313 K was investigated by high-performance liquid chromatography, NMR and mass spectrometry. The relative stability of the initial ring-opened kappaS complex [Pt(cbdca-kappaO)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] leads to increased formation of the kinetically favoured kappaS:kappaS' bis-adduct [Pt(Ac-glyglymet-OH-kappaS)(2)(NH(3))(2)](2+) in comparison with cisplatin. As a result a second 1:2 reaction pathway kappaS-->kappaS:kappaS'-->kappa(2)N(M), S:kappaS'-->kappa(3)N(G2),N(M), S:kappaS', where N(M) and N(G2) represent, respectively, metallated methionine and glycine nitrogen atoms, competes with the 1:1 route kappaS-->kappa(2)N(M), S-->kappa(3)N(G2),N(M), S also observed for cisplatin. Cleavage of N-acetylglycine at the backbone C(O)-N bond to the second gly residue (G2) is observed after 100 h for the respective tridentate complexes [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S) (Ac-glyglymet-OH-kappaS)] and [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S)(NH(3))] at pH <5.2. The longevity of the initial kappaS complex leads to about an eight-fold increase in the rate of formation of the kappaN7:kappaN7' bis-adduct [Pt(5'-GMP-kappaN7)(2)(NH(3))(2)](2-) for the reaction of carboplatin with 5'-GMP(2-) at pH 7 in the presence of Ac-glyglymet-OH. A mixed-ligand kappaS:kappaN7 species [Pt(5'-GMP-kappaN7)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] provides the major precursor for this 1:2 nucleotide complex and kappaN7 coordination of 5'-GMP(2-) is also observed in the kappa(2)N(M),S:kappaN7 complex [Pt(5'-GMP-kappaN7)(Ac-glyglymetH(-1)-OH-kappa(2)N(M),S)(NH(3))(2)](-) formed by substitution of the ammine ligand trans to the methionine sulphur. As the intermediate kappaS:kappaN7 species is formed rapidly within the first 10 h of reaction, these results suggest that the transfer reaction pathway kappaS-->kappaS:kappaN7-->kappaN7:kappaN7' involving kappaS platinated peptides could play an important role in accelerating the rate of DNA binding for carboplatin.  相似文献   

7.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

8.
Despite their structural similarity, [Pt(dien)(1-MeC-N3)](2+) (1), [Pd(dien)(1-MeC-N3)](2+) (2), and [Pt(NH(3))(3)(1-MeC-N3)](2+) (3) (with dien=diethylenetriamine and 1-MeC=neutral 1-methylcytosine) behave in part markedly different at strongly alkaline pH (12-13) and at room temperature. While 1 and 2, yet not 3 show linkage isomerization from N3 to N4, deamination of the cytosine nucleobase to 1-methyluracilate occurs with 1 and 3, yet not with 2. Pathways leading to N3,N4-diplatinated 1-MeC(-) complexes (1-MeC(-)=1-methylcytosine, deprotonated at exocyclic amino group N4) have been studied at high pH by starting from 1 and 3, respectively, and adding (dien)Pt(II). It appears that initial migration of the metal entity from N3 to N4, followed by binding of the second metal to the available N3 site, is favored over sequential coordination to N3 and then N4. X-ray crystal data of 1-3 density functional theory (DFT) calculations, and NMR ((1)H, (195)Pt) data are presented.  相似文献   

9.
The novel phase II anticancer drug BBR3464 ([[ trans-PtCl(NH(3))(2)](2)- micro -[ trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4)) forms a 1,4-interstrand cross-link adduct with the self-complementary DNA octamer 5'-d(ATG*TACAT)(2)-3', with the two platinum atoms coordinated in the major groove at the N7 positions of guanines that are four base pairs apart on opposite DNA strands. The "central" tetraamine linker [ trans-H(2)N(CH(2))(6)NH(2)Pt(NH(3))(2)NH(2)(CH(2))(6)NH(2)] was located in or close to the minor groove. The adduct was characterized and analyzed by MS, UV and NMR spectroscopy. NMR analysis of the adduct shows strong H8/H1' intraresidue crosspeaks observed for the A1 and A7 resonances, consistent with a syn conformation for these bases which is usually not observed for adenine residues and bases not directly involved in the cross-link in oligonucleotides. The strong intraresidue H8/H1' crosspeak is also observed for G3. Examination of the structure thus reveals unusual cooperative effects unique to this class of anticancer drugs and is the first demonstration of cooperative effects in solution for an anticancer drug. The significant characteristic of the structure is the lack of severe DNA distortion such as a kink, directed bend or significant unwinding of the helices which are characteristic for DNA adducts of mononuclear complexes. This may contribute to the lack of protein recognition of the cross-link by HMG-domain proteins, a biological consequence significantly different from that of mononuclear complexes such as cisplatin. Since DNA is the principal target in vivo for these Pt cross-linking agents, the unique structural perturbations induced by BBR3464 cross-links are likely related to its increased cytotoxicity and antitumor activity as compared to cisplatin ( cis-DDP).  相似文献   

10.
The results presented describe the effects of various spectator ligands, attached to a platinum 1,2-intrastand d(GpG) cross-link in duplex DNA, on the binding of high mobility group box (HMGB) domains and the TATA-binding protein (TBP). In addition to cisplatin-modified DNA, 15-base pair DNA probes modified by [Pt(1R,2R-diaminocyclohexane)](2+), cis-[Pt(NH(3))(cyclohexylamine)](2+), [Pt(ethylenediamine)](2+), cis-[Pt(NH(3))(cyclobutylamine)](2+), and cis-[Pt(NH(3))(2-picoline)](2+) were examined. Electrophoretic mobility shift assays show that both the A and B domains of HMGB1 as well as TBP discriminate between different platinum-DNA adducts. HMGB1 domain A is the most sensitive to the nature of the spectator ligands on platinum. The effect of the spectator ligands on protein binding also depends highly on the base pairs flanking the platinated d(GpG) site. Double-stranded oligonucleotides containing the AG*G*C sequence, where the asterisks denote the sites of platination, with different spectator ligands are only moderately discriminated by the HMGB proteins and TBP, but the recognition of dsTG*G*A is highly dependent on the ligands. The effects of HMGB1 overexpression in a BG-1 ovarian cancer cell line, induced by steroid hormones, on the sensitivity of cells treated with [Pt(1R,2R-diaminocyclohexane)Cl(2)] and cis-[Pt(NH(3))(cyclohexylamine)Cl(2)] were also examined. The results suggest that HMGB1 protein levels influence the cellular processing of cis-[Pt(NH(3))- (cyclohexylamine)](2+), but not [Pt((1R,2R)-diaminocyclohexane)](2+), DNA lesions. This result is consistent with the observed binding of HMGB1a to platinum-modified dsTG*G*A probes but not with the binding affinity of HMGB1a and HMGB1 to platinum-damaged dsAG*G*C oligonucleotides. These experiments reinforce the importance of sequence context in platinum-DNA lesion recognition by cellular proteins.  相似文献   

11.
Polynuclear platinum compounds demonstrate many novel phenomena in their interactions with DNA and proteins as well as novel anti-cancer activities. Previous studies indicated that the high positive charge and the non-coordinated "central linker" of the polynuclear compounds could have major contributions to these features. Therefore, a series of non-covalent polynuclear platinum complexes, [[Pt(NH(3))(3)](2)-mu-Y](n+) (Y=polyamine linker or [trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)]) was synthesized and the DNA interactions of these platinum complexes were investigated. The conformational changes induced by these compounds in polymer DNA were studied by circular dichroism and the reversibility of the transition was tested by subsequent titration with the DNA intercalating agent ethidium bromide (EtBr). Fluorescent quenching was also used to assess the ability of EtBr to intercalate into A and Z-DNA induced by the compounds. The non-covalent polynuclear platinum complexes induced both B-->A and B-->Z conformational changes in polymer DNA. These conformational changes were partially irreversible. The platinum compound with the spermidine linker, [[Pt(NH(3))(3)](2)-mu-spermidine-N(1),N(8)]Cl(5).2H(2)O, is more efficient in inducing the conformational changes of DNA and it is less reversible than complexes with other linkers. The melting point study showed that the non-covalent polynuclear platinum complexes stabilized the duplex DNA and the higher the electrical charge of the complexes the greater the stabilization observed.  相似文献   

12.
The novel anticancer drug ([[trans-PtCl(NH(3))(2)](2)-mu-[trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4)) (BBR3464, 1,0,1/t,t,t, TPC) forms a 1,4-interstrand cross-linked adduct with the self-complementary DNA octamer 5'-d(ATG*TACAT)(2)-3', with the two platinum atoms coordinated in the major groove at N7 positions of guanines four base pairs apart on opposite DNA strands [Y. Qu, N.J. Scarsdale, M.-C. Tran, N. Farrell, J. Biol. Inorg. Chem. 8 (2003) 19-28]. The structure of the identical cross-link formed by the dinuclear [[trans-PtCl(NH(3))(2)](2)-mu-NH(2)(CH(2))(6)NH(2)]](NO(3))(2) (BBR3005, 1,1/t,t, DPC) was examined for comparison. The adduct was characterized and analyzed by MS, UV and NMR spectroscopy. NMR analysis of the adduct shows platination of the unique guanine residues. The strong H8/H1' intraresidue cross-peaks observed for all purine residues (A1, G3, A5 and A7) are consistent with a syn-conformation of the nucleoside unit in all cases. Thus, the structure resembles closely that formed by the trinuclear compound. Further confirmation of this similarity comes from the increase in melting temperature (66 degrees for DPC, 60 degrees for TPC, 22 degrees for free oligonucleotide). Since DNA is the principal target in vivo for these Pt cross-linking agents, the unique structural perturbations induced by these cross-links may be related to the increased cytotoxicity and antitumor activity of polynuclear platinum compounds as compared to cisplatin (cis-DDP). The similarity in the structures suggests opportunities to "deliver" the cross-link in a more efficient manner than the current clinically tested drug.  相似文献   

13.
The telomeric sequence (T(2)G(4))(4) was platinated in aqueous solutions containing 50 mM LiClO(4), NaClO(4), or KClO(4). The identification of the guanines which reacted with [Pt(NH(3))(3)(H(2)O)](2+) revealed that the same type of folding exists in the presence of the three cations and that the latter determine the relative stabilities of the G-quadruplex structures in the order K(+) > Na(+) > Li(+). The tri-ammine complex yielded ca. 40--90% of adducts, mono- and poly-platinated, bound to 4 guanines out of the 16 guanines in the sequence, in the decreasing amounts G9 > G15 > G3 > G21. The formation of these adducts was interpreted with a G-quadruplex structure obtained by restrained molecular dynamics (rMD) simulations which confirms the schematic model proposed by Williamson et al. [(1989) Cell 59, 871--880]. The bifunctional complexes cis- and trans-[Pt(NH(3))(2)(H(2)O)(2)](2+) also first reacted with G9 and G15 and gave cross-linked adducts between two guanines, which did not exceed 5% each of the products formed. Both the cis and trans isomers formed a G3-G15 platinum chelate, and the second also formed bis-chelates at both ends of the G-quadruplex structure: G3-G15/G9-G21 and G3-G15/G9-G24. The rMD simulations showed that the cross-linking reactions by the trans complex can occur without disturbing the stacking of the three G-quartets.  相似文献   

14.
The reaction of trans-[Ru(NH(3))(4)P(OEt)(3)NO](3+) and mitochondria was investigated through differential pulse polarography and fluorimetry. The nitrosyl complex undergoes one-electron reduction centered on the NO ligand site. The reaction between the mitochondrial reductor and trans-[Ru(NH(3))(4)P(OEt)(3)NO](3+) exhibits a second order specific rate constant calculated as k=2 x 10(1) M(-1) s(-1). The reduced species, trans-[Ru(NH(3))(4)P(OEt)(3)NO](2+), quickly releases NO, yielding trans-[Ru(NH(3))(4)P(OEt)(3)H(2)O](2+). The low toxicities of both trans-[Ru(NH(3))(4)P(OEt)(3)(NO)](2+) and trans-[Ru(NH(3))(4)P(OEt)(3)H(2)O](2+) and its ability to release NO after reductive activation in a biological medium make the nitrosyl compound a useful model of a hypotensive drug.  相似文献   

15.
In the present study the nature and the hydrolysis of DNA-Pt complexes with the platinum compounds, [Pt(dien)Cl]Cl, trans- and cis-Pt(NH3)2Cl2, using potentiometric chloride determinations, have been investigated. The trans-Pt(NH3)2Cl2 and the [Pt(dien)Cl]Cl react with the GC planes at the N7(G) sites, while the cis-Pt(NH3)2Cl2 compound reacts with the GC planes and forms a chelate by using the N7(G) and O6(G) sites. The complex is a specific 1:1 Pt:DNA adduct. The platinum atom in cis-Pt(NH3)2Cl2 liberates both chlorine atoms on chelation. A mechanism for the in vivo antitumor activity of the cis-Pt(NH3)2Cl2 is proposed and the structure activity relationship is discussed.  相似文献   

16.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

17.
The folding of AG(3)(T(2)AG(3))(3) was investigated in the presence of Na(+) or K(+) ions, by using the dinuclear platinum complexes [{trans-PtCl(NH(3))(2)}(2)H(2)N(CH(2))(n)NH(2)]Cl(2) (n = 2 or 6). AG(3)(T(2)AG(3))(3) has been previously found to adopt two different quadruplex structures: the antiparallel one in a solution containing Na(+) and the parallel one in a K(+)-containing crystal. The two structures are strikingly distinct and are not expected to form the same platinum cross-links. Therefore, characterization of the cross-links formed with platinum complexes in solution allowed the predominant conformation(s) to be identified. The bases coordinating the platinum atoms were identified by chemical and 3'-exonuclease digestions. The observed cross-links showed that the parallel structure exists in solution whatever the cation and confirmed the existence of the antiparallel structure in the presence of both cations as previously reported from cross-linking experiments of AG(3)(T(2)AG(3))(3) by mononuclear platinum complexes. Furthermore, the major platinum cross-links were unexpectedly formed between two guanines belonging to the same G-quartet. Their formation was rationalized using molecular dynamics simulations in implicit solvent of the two quadruplex structures. It was shown that they were flexible, allowing some guanines to leave reversibly the top G-quartet and thus rendering their N(7) atom accessible to platinum complexes. Our results also suggest that the human telomere sequence could be a target for such platinum complexes.  相似文献   

18.
19.
The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.  相似文献   

20.
5-Fluorouracil-cisplatin adducts with potential antitumor activity   总被引:1,自引:0,他引:1  
Using 5-fluorouracil (5-FU) and cis-diamminedichloroplatinum(II) (cisplatin, CDDP) as starting compounds, 5-FU-cisplatin adducts cis-[Pt(NH(3))(2)(HFU)Cl] (1) and cis-[Pt(NH(3))(2)(HFU)(2)] (2) were prepared. The obtained complexes were characterized by IR, ES-MS and 1H NMR spectroscopy. Complex 1 reacted with guanosine-5'-monophosphate (5'-GMP) and gave rise to a stable mixed-ligand complex cis-[Pt(NH(3))(2)(HFU)(GMP)] (3), whereas 2 did not undergo a similar reaction. In vitro cell growth inhibition tests of complexes 1 and 2 exhibited moderate antitumor activities against the melanoma B16-BL6 cell line. This work provides the basis for a potential alternative for the combinational use of 5-FU and CDDP in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号