首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-quadruplex DNA binding by a series of carbocyanine dyes.   总被引:3,自引:0,他引:3  
We have examined a number of carbocyanine dyes for their ability to bind intramolecular G-quadruplex DNA structures (G4'-DNA) using a Taq polymerase stop assay. Of the five dyes examined, only one, N,N'-diethylthiacarbocyanine iodide (DTC), was found to bind to G4'-DNA. DTC was also the only dye found to inhibit human telomerase at 50 microM concentration.  相似文献   

2.
A rapid procedure was developed for the simultaneous flow cytometric analysis of nuclear protein using fluorescein isothiocyanate, and DNA using propidium iodide in isolated nuclei. The staining procedure did not involve centrifugation and was easily adapted to the staining of human peripheral blood lymphocytes stimulated with phytohemagglutinin, EL4 murine lymphoid tumor cells in suspension culture, and R3327-G rat prostatic adenocarcinoma solid tumor specimens. Histograms of unstimulated and PHA-stimulated HPBL perturbed by actinomycin D, hydroxyurea, 3H-TdR, colcemid, or hydroxyurea + colcemid showed that 1) resting, noncycling G1 (G1Q) cells are distinguished from late G1 (G1AB) cells, 2) early G2 (G2A) cells are distinguished from late G2 (G2B) cells, and 3) mitotic cells are distinguished from G2 cells. Treatment with hydroxyurea resulted in a build-up of cells having high nuclear protein content and 2C DNA content (G1AB), while incubation with 3H-TdR caused an increase in the number of cells with high nuclear protein content and 4C DNA content (G2B). Colcemid-blocked mitotic cells were identified as having low nuclear protein content (lower than G2A nuclei) and 4C DNA content. The nuclear DNA/protein histograms of untreated and colcemid-treated log-phase EL4 cells provided information concerning G1A, G1B, S, G2A, G2B, and M. The method was also used to quantitate the response of androgen-sensitive rat prostatic R3327-G tumors to androgen deprivation following castration. Sample preparation and staining for correlated nuclear DNA/protein measurements takes approximately the same amount of time as for single parameter nuclear DNA measurements.  相似文献   

3.
DNA polymerase (pol) iota has been proposed to be involved in translesion synthesis past minor groove DNA adducts via Hoogsteen base pairing. The N2 position of G, located in minor groove side of duplex DNA, is a major site for DNA modification by various carcinogens. Oligonucleotides with varying adduct size at G N2 were analyzed for bypass ability and fidelity with human pol iota. Pol iota effectively bypassed N2-methyl (Me)G and N2-ethyl(Et)G, partially bypassed N2-isobutyl(Ib)G and N2-benzylG, and was blocked at N2-CH2(2-naphthyl)G (N2-NaphG), N2-CH2(9-anthracenyl)G (N2-AnthG), and N2-CH2(6-benzo[a]pyrenyl)G. Steady-state kinetic analysis showed decreases of kcat/Km for dCTP insertion opposite N2-G adducts according to size, with a maximal decrease opposite N2-AnthG (61-fold). dTTP misinsertion frequency opposite template G was increased 3-11-fold opposite adducts (highest with N2-NaphG), indicating the additive effect of bulk (or possibly hydrophobicity) on T misincorporation. N2-IbG, N2-NaphG, and N2-AnthG also decreased the pre-steady-state kinetic burst rate compared with unmodified G. High kinetic thio effects (S(p)-2'-deoxycytidine 5'-O-(1-thiotriphosphate)) opposite N2-EtG and N2-AnthG (but not G) suggest that the chemistry step is largely interfered with by adducts. Severe inhibition of polymerization opposite N2,N2-diMeG compared with N2-EtG by pol eta but not by pol iota is consistent with Hoogsteen base pairing by pol iota. Thus, polymerization by pol iota is severely inhibited by a bulky group at G N2 despite an advantageous mode of Hoogsteen base pairing; pol iota may play a limited role in translesion synthesis on bulky N2-G adducts in cells.  相似文献   

4.
After irradiation with 4 Gy of X rays the nuclear protein and DNA contents (to determine cell-cycle position) of HeLa cells were determined by isolating nuclei and staining them with the fluorescent dyes fluorescein isothiocyanate (FITC) for protein and propidium iodide (PI) for DNA. Immediately following irradiation there was no change in the shape of the bivariate (FITC-PI) histogram. At 3 and 4 h after irradiation the region of the histogram which corresponds to mitotic cells had disappeared. At 6 h nuclei reappeared in this region. The maximum rearrangement of the histogram (i.e., maximum accumulation of cells in G2 with minimum cells in G1) occurred at 10.5 h after irradiation, which is later than the time required for mitotic recovery. No change in nuclear protein content of cells in G1 and S was observed. However, beginning at 4 h after irradiation and continuing throughout the period of observation, a small (10-20%) but significant increase in nuclear protein content was observed for nuclei isolated from cells in G2. The increase in nuclear protein content may be part of the mechanism of G2 arrest and/or may reflect unbalanced growth.  相似文献   

5.
Direct selection of Kluyveromyces lactis resistant to the antibiotic G418 following transformation with the kanamycin resistance gene of Tn903 required the development of a procedure for producing high yields of viable spheroplasts and for the isolation of autonomous replication sequences (ARS). To obtain high yields of viable spheroplasts, cells were treated with (1) a thiol-reducing agent (L-cysteine), and (2) a high concentration of an osmotic stabilizer, 1.5 M sorbitol. Several ARS-containing plasmids were selected from a K. lactis recombinant DNA library in K. lactis and in Saccharomyces cerevisiae. Two of four ARS clones selected in K. lactis promoted transformation frequencies of 5-10 X 10(2) G418-resistant cells/micrograms of plasmid DNA. This frequency of transformation was at least twice as high as with ARS clones selected in S. cerevisiae. The stability of ARS-containing plasmids varied; after 20 generations of growth in the presence of G418, 16-38% of the cells remained resistant to the drug. In the absence of selection pressure less than 5% of the cells retained the drug-resistance phenotype. Plasmids containing the ARS1 or 2 mu replicon of S. cerevisiae failed to transform K. lactis for G418 resistance. Inclusion of S. cerevisiae centromere, CEN4, in a K. lactis ARS recombinant plasmid did not increase the stability of the plasmid in K. lactis, and marker genes on the vector segregated predominantly 4-:0+ through meiosis. We conclude that neither the ARS sequences or the centromere of S. cerevisiae was functioning in K. lactis.  相似文献   

6.
We analyzed Niemann-Pick type C disease 1 (NPC1) gene in 12 patients with Niemann-Pick type C disease by sequencing both cDNA obtained from fibroblasts and genomic DNA. All the patients were compound heterozygotes. We found 15 mutations, eight of which previously unreported. The comparison of cDNA and genomic DNA revealed discrepancies in some subjects. In two unrelated patients carrying the same mutations (P474L and nt 2972del2) only one mutant allele (P474L), was expressed in fibroblasts. The mRNA corresponding to the other allele was not detected even in cells incubated with cycloheximide. The promoter variants (-1026T/G and -1186T/C or -238 C/G), found to be in linkage with 2972del2 allele do not explain the lack of expression of this allele, as they were also found in control subjects. In another patient, (N1156S/Q922X) the N1156S allele was expressed in fibroblasts while the expression of the other allele was hardly detectable. In a fourth patient cDNA analysis revealed a point mutation in exon 20 (P1007A) and a 56 nt deletion in exon 22 leading to a frameshift and a premature stop codon. The first mutation was confirmed in genomic DNA; the second turned out to be a T-->G transversion in exon 22, predicted to cause a missense mutation (V1141G). In fact, this transversion generates a donor splice site in exon 22, which causes an abnormal pre-mRNA splicing leading to a partial deletion of this exon. In some NPC patients, therefore, the comparison between cDNA and genomic DNA may reveal an unexpected expression of some mutant alleles of NPC1 gene.  相似文献   

7.
The conformation of the trans-anti-(1S,2R,3S,4R)-N(2)-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyguanosyl adduct in d(G(1)G(2)C(3)A(4)G(5)X(6)T(7)G(8)G(9)T(10)G(11)).d(C(12)A(13)C(14)C(15)A(16)C(17)C(18)T(19)G(20)C(21)C(22)), bearing codon 12 of the human N-ras protooncogene (underlined), was determined. This adduct had S stereochemistry at the benzylic carbon. Its occurrence in DNA is a consequence of trans opening by the deoxyguanosine amino group of (1R,2S,3S,4R)-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthracenyl-3,4-diol. The resonance frequencies, relative to the unmodified DNA, of the X(6) H1' and H6 protons were shifted downfield, whereas those of the C(18) and T(19) H1', H2', H2' ', and H3' deoxyribose protons were shifted upfield. The imino and amino resonances exhibited the expected sequential connectivities, suggesting no interruption of Watson-Crick pairing. A total of 426 interproton distances, including nine uniquely assigned BA-DNA distances, were used in the restrained molecular dynamics calculations. The refined structure showed that the benz[a]anthracene moiety bound in the minor groove, in the 5'-direction from the modified site. This was similar to the (+)-trans-anti-benzo[a]pyrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon [Cosman, M., De Los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., Broyde, S., and Patel, D. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918]. It differed from the (-)-trans-anti-benzo[c]phenanthrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon, which intercalated in the 5'-direction [Lin, C. H., Huang, X., Kolbanovskii, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E., and Patel, D. J. (2001) J. Mol. Biol. 306, 1059-1080]. The results provided insight into how PAH molecular topology modulates adduct structure in duplex DNA.  相似文献   

8.
To safeguard genetic integrity, cells have evolved an accurate but not failsafe mechanism of DNA replication. Not all DNA sequences tolerate DNA replication equally well [1]. Also, genomic regions that impose structural barriers to the DNA replication fork are a potential source of genetic instability [2, 3]. Here, we demonstrate that G4 DNA-a sequence motif that folds into quadruplex structures in vitro [4, 5]-is highly mutagenic in vivo and is removed from genomes that lack dog-1, the C. elegans ortholog of mammalian FANCJ [6, 7], which is mutated in Fanconi anemia patients [8-11]. We show that sequences that match the G4 DNA signature G3-5N1-3G3-5N1-3G3-5N1-3G3-5 are deleted in germ and somatic tissues of dog-1 animals. Unbiased aCGH analyses of dog-1 genomes that were allowed to accumulate mutations in >100 replication cycles indicate that deletions are found exclusively at G4 DNA; deletion frequencies can reach 4% per site per animal generation. We found that deletion sizes fall short of Okazaki fragment lengths [12], and no significant microhomology was observed at deletion junctions. The existence of 376,000 potentially mutagenic G4 DNA sites in the human genome could have major implications for the etiology of hereditary FancJ and nonhereditary cancers.  相似文献   

9.
10.
The pH- and time-dependent reaction of the anticancer drug carboplatin, [Pt(cbdca-kappa(2)O,O')(NH(3))(2)] (cbdca=cyclobutane-1,1-dicarboxylate), with the tripeptides H-glyglymet-OH (glycylglycyl-L-methionine) and Ac-glyglymet-OH at 313 K was investigated by high-performance liquid chromatography, NMR and mass spectrometry. The relative stability of the initial ring-opened kappaS complex [Pt(cbdca-kappaO)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] leads to increased formation of the kinetically favoured kappaS:kappaS' bis-adduct [Pt(Ac-glyglymet-OH-kappaS)(2)(NH(3))(2)](2+) in comparison with cisplatin. As a result a second 1:2 reaction pathway kappaS-->kappaS:kappaS'-->kappa(2)N(M), S:kappaS'-->kappa(3)N(G2),N(M), S:kappaS', where N(M) and N(G2) represent, respectively, metallated methionine and glycine nitrogen atoms, competes with the 1:1 route kappaS-->kappa(2)N(M), S-->kappa(3)N(G2),N(M), S also observed for cisplatin. Cleavage of N-acetylglycine at the backbone C(O)-N bond to the second gly residue (G2) is observed after 100 h for the respective tridentate complexes [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S) (Ac-glyglymet-OH-kappaS)] and [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S)(NH(3))] at pH <5.2. The longevity of the initial kappaS complex leads to about an eight-fold increase in the rate of formation of the kappaN7:kappaN7' bis-adduct [Pt(5'-GMP-kappaN7)(2)(NH(3))(2)](2-) for the reaction of carboplatin with 5'-GMP(2-) at pH 7 in the presence of Ac-glyglymet-OH. A mixed-ligand kappaS:kappaN7 species [Pt(5'-GMP-kappaN7)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] provides the major precursor for this 1:2 nucleotide complex and kappaN7 coordination of 5'-GMP(2-) is also observed in the kappa(2)N(M),S:kappaN7 complex [Pt(5'-GMP-kappaN7)(Ac-glyglymetH(-1)-OH-kappa(2)N(M),S)(NH(3))(2)](-) formed by substitution of the ammine ligand trans to the methionine sulphur. As the intermediate kappaS:kappaN7 species is formed rapidly within the first 10 h of reaction, these results suggest that the transfer reaction pathway kappaS-->kappaS:kappaN7-->kappaN7:kappaN7' involving kappaS platinated peptides could play an important role in accelerating the rate of DNA binding for carboplatin.  相似文献   

11.
Cohen SM  Mikata Y  He Q  Lippard SJ 《Biochemistry》2000,39(38):11771-11776
HMG-domain proteins bind strongly to bent DNA structures, including cruciform and cisplatin-modified duplexes. Such protein-platinated DNA complexes, formed where the DNA is modified by the active cis but not the inactive trans isomer of diamminedichloroplatinum(II), are implicated in the cytotoxic mechanism of the drug. A series of oligonucleotide duplexes with deoxyguanosine nucleosides flanking a cis-[Pt(NH(3))(2)?d(GpG)-N7(1),-N7(2)?] cross-link have been synthesized. These probes were used to determine the flanking sequence dependence of the affinity of the individual HMG domains of HMG1 toward cisplatin-modified DNA. Nine related sequences, where N(1) and N(2) are not dG and GG is the 1,2-intrastrand cisplatin adduct in N(1)GGN(2), were previously investigated [Dunham, S. U., and Lippard, S. J. (1997) Biochemistry 36, 11428-11436]. Three of the seven remaining possible sequences for which N(1) and/or N(2) was dG were prepared here by using normal deoxyguanosine, but the rest, where N(1) is dG and N(2) is dA, dC, T, or dG, could not be isolated in pure form. These sequences were accessed by using the synthetic bases 7-deazaadenine and 7-deazaguanine, which lack the nucleophilic N7 atom in the purine ring. Deaza nucleotides accurately mimic the properties of the natural bases, allowing the interaction of the HMG-domain proteins with cisplatin-modified DNA to be examined. These experiments reveal that the flexibility of A.T versus G.C flanking base pairs, rather than base-specific contacts, determines HMG1domA protein selectivity. This conclusion was supported by use of mutant HMG1domA and HMG1domB proteins, which exhibit identical flanking sequence selectivity. The methods and results obtained here not only improve our understanding of how proteins might mediate cisplatin genotoxicity but also should apply more generally in the investigation of how other proteins interact with damaged DNA.  相似文献   

12.
REV1, a Y family DNA polymerase (pol), is involved in replicative bypass past DNA lesions, so-called translesion DNA synthesis. In addition to a structural role as a scaffold protein, REV1 has been proposed to play a catalytic role as a dCTP transferase in translesion DNA synthesis past abasic and guanine lesions in eukaryotes. To better understand the catalytic function of REV1 in guanine lesion bypass, purified recombinant human REV1 was studied with two series of guanine lesions, N(2)-alkylG adducts (in oligonucleotides) ranging in size from methyl (Me) to CH(2)(6-benzo[a]pyrenyl) (BP) and O(6)-alkylG adducts ranging from Me to 4-oxo-4-(3-pyridyl)butyl (Pob). REV1 readily produced 1-base incorporation opposite G and all G adducts except for O(6)-PobG, which caused almost complete blockage. Steady-state kinetic parameters (k(cat)/K(m)) were similar for insertion of dCTP opposite G and N(2)-G adducts but were severely reduced opposite the O(6)-G adducts. REV1 showed apparent pre-steady-state burst kinetics for dCTP incorporation only opposite N(2)-BPG and little, if any, opposite G, N(2)-benzyl (Bz)G, or O(6)-BzG. The maximal polymerization rate (k(pol) 0.9 s(-1)) opposite N(2)-BPG was almost the same as opposite G, with only slightly decreased binding affinity to dCTP (2.5-fold). REV1 bound N(2)-BPG-adducted DNA 3-fold more tightly than unmodified G-containing DNA. These results and the lack of an elemental effect ((S(p))-2'-deoxycytidine 5'-O-(1-thiotriphosphate)) suggest that the late steps after product formation (possibly product release) become rate-limiting in catalysis opposite N(2)-BPG. We conclude that human REV1, apparently the slowest Y family polymerase, is kinetically highly tolerant to N(2)-adduct at G but not to O(6)-adducts.  相似文献   

13.
The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such as rfa1-t11, are lethal in combination with rfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint gene RAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G(1)/S DNA damage checkpoint response and that both the rfc4-2 and rfa1-t11 strains are defective in the G(2)/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles.  相似文献   

14.
In this paper, hydrogen bonding interaction and hydration in crystal structures of both DNA and RNA oligonucleotides are discussed. Their roles in the formation and stabilization of oligonucleotides have been covered. Details of the Watson-Crick base pairs G.C and A.U in DNA and RNA are illustrated. The geometry of the wobble (mismatched) G.U base pairs and the cis and almost trans conformations of the mismatched U.U base pairs in RNA is described. The difference in hydration of the Watson-Crick base pairs G.C, A.U and the wobble G.U in different sequences of codon-anticodon interaction in double helical molecules are indicative of the effect of hydration. The hydration patterns of the phosphate, the 2'-hydroxyl groups, the water bridges linking the phosphate group, N7 (purine) and N4 of Cs or O4 of Us in the major groove, the water bridges between the 2'-hydroxyl group and N3 (purine) and O2 (pyrimidine) in the minor groove are discussed.  相似文献   

15.
Aqueous N2O/O2-saturated solutions of poly(U) were irradiated at 0 degrees C and the release of unaltered uracil determined. Immediately after irradiation G(uracil release) was 1.5 which increased to a value of 5.3 +/- 0.3 upon heating to 95 degrees C. Thereby all of the organic hydroperoxides (G = 6.8 +/- 0.7) and some of the hydrogen peroxide (G = 1.7 +/- 0.2) was destroyed leaving G(peroxidic material; mainly hydrogen peroxide) = 1.0 +/- 0.7. G(chromophore loss) = 8-11 was measured immediately after irradiation, but no increase was observed upon heating. Addition of iodide destroyed the hydroperoxides and caused immediate base release to rise to G = 4 and further heating brought the value to that observed in the absence of iodide. In contrast, on reducing the hydroperoxides with NaBH4, immediate uracil release rose to only G = 2.8 and no further increase was observed on heating. A major product (G = 2.7) is carbon dioxide. There are also osazone-forming compounds produced (G = 2.7), all of which are originally bound to poly(U). Heating in acid solutions, as is required for this test, releases glycoladehyde-derived osazone (G = 0.8) and further unidentified low molecular weight material (G = 0.9). It is concluded that the primary radicals which cause these lesions are the base OH adduct radicals. In the presence of oxygen these are converted into the corresponding peroxyl radicals which abstract an H atom from the sugar moiety. In the course of this reaction base-hydroperoxides are formed. However, such base hydroperoxides cannot be the only organic hydroperoxides, but some (G congruent to 2.5) sugar-hydroperoxides must be formed as indicated by the increase in base release by the addition of iodide. It is speculated that a sugar-hydroperoxide located at C(3') is reduced by iodide to a carbonyl function at C(3'), a lesion that releases the base, while reduction with NaBH4 reduces it to an alcohol function at C(3') thus preventing base release.  相似文献   

16.
菌株L342分离自中国四川省的废弃白蚁巢,rDNA序列分析表明L342为蚁巢膝束霉Geniculisynnema termiticola。抗氧化活性评价结果显示其PDB发酵产物的乙酸乙酯提取物具有很强的还原能力和中等强度的DPPH清除能力。采用硅胶柱色谱、ODS柱色谱、Sephadex LH-20柱色谱、HPLC等分离方法,从G. termiticola的PDB发酵粗提物中分离鉴定了6个化合物:3,4-Dihydro-6,8-dihydroxy-3-methylisocoumarin (1), regiolone (2), (3S, 4S)-3,4,6,8-tetradydroxy-3,4-Dihydronaphthalen-1(2H)-one (3), ergosta-4,6,8(14),22-tetraen-3-one (4), cerebroside A (5), and cerebroside C (6)。其中化合物4-6具有中等强度的铁离子还原能力,化合物4还具有一定的HeLa细胞毒活性(IC50=98.3μmol/L)。G. termiticola发酵产物具有产生有生物活性次级代谢产物的潜力,有望开发成为一种新型的功能性食品。  相似文献   

17.
The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.  相似文献   

18.
19.
Dihydrofolate reductase (DHFR, EC 1.5.1.3) is an important enzyme involved in DNA metabolism. In this connection the cell cycle modulation of DHFR levels in HeLa S3 and HL 60 cell lines was investigated by flow cytometric analysis. A concentration of 4 micrograms/ml of aphidicolin was employed to synchronize the cell lines. DHFR was cytochemically detected by using tetrazolium salt and immunofluorescence techniques; DNA content was evaluated by means of propidium iodide staining. At 0, 2, 4, 6, 8, 10, 12 hrs. after the removal of the drug we observed a low DHFR level in G0-G1 phase, followed by an increase during late S and G2/M phases. The variations of this enzyme may represent, under well defined conditions, a marker of cycling cells.  相似文献   

20.
It has been reported that the response of target cells to steroid hormone (SH) stimulation may depend on their position in the cell cycle. The DNA and RNA contents of malignant cells of the endometrium cultured in vitro were measured using flow cytometry (FCM). We also measured estrogen receptor (ER) and progesterone receptor (PR) levels of cells at different positions in the cell cycle. The G1 and S phases of the cell cycle were investigated using cells synchronized by sodium n-butyrate (G1 block), methotrexate (S block), and excess thymidine (S block). For DNA measurements, the cells were stained with propidium iodide following RNase treatment. For RNA measurements (double-stranded RNA) the cells were treated with DNase. We found that S phase synchronization by methotrexate was 136.2% of control (100%). Using the excess thymidine block and release procedure, the S phase fraction was 185.1% of control. G1 phase synchronization by sodium n-butyrate was 134% of control. The estrogen receptor level in G1 phase synchronized cells increased to 5.94 fmol/micrograms DNA in the cytosol and 12.35 fmol/micrograms DNA in the nuclear fraction. These levels represent a sevenfold total increase over that of the control estrogen receptor level. Cells in S phase showed no significant increase in estrogen receptor levels over control cells. Based on this study, the functional increase of the steroid receptor was most significant in the G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号