首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of glutamate and GABA in response to K+ depolarization was determined for tissue prisms prepared from brain subregions removed from rats following 30 min of forebrain ischemia or recirculation periods up to 24 h. There were statistically significant effects of this treatment on release of both amino acids from samples of the dorsolateral striatum, an area developing selective neuronal degeneration. However, for at least the first 3 h of recirculation the calcium-dependent and calcium-independent release of both amino acids in this region were similar to pre-ischemic values. Differences were observed under some conditions at longer recirculation times. In particular there was a decrease in calcium-dependent GABA release at 24 h of recirculation and a trend towards increased release of glutamate at 6 h of recirculation and beyond. No statistically significant differences were seen in samples from the paramedian neocortex, a region resistant to post-ischemic damage. These results suggest that changes in the ability to release glutamate and GABA in response to stimulation are not necessary for the development of neurodegeneration in the striatum but rather that release of these amino acids may be modified as a result of the degenerative process.  相似文献   

2.
Abstract: A procedure was established for determining the calcium content of mitochondria isolated from rat brain subregions based on changes in fura-2 fluorescence after disruption of the organelles with Triton X-100 and sodium dodecyl sulfate. Mitochondria isolated from the forebrain of normal rats contained 2.5 ± 0.9 nmol of calcium/mg of protein. A 30-min ischemic period produced an approximately twofold increase in the calcium content of mitochondria isolated from the dorsolateral striatum, a region in which most neurons die within 24 h after this period of ischemia. The calcium content of mitochondria from the paramedian cortex, a region in which there are few ischemia-susceptible neurons, tended to be similarly increased, although this difference was not statistically significant. Larger increases (to approximately five times control values) were seen in mitochondria isolated from both regions after 10 min of recirculation. By 1 h of recirculation, mitochondrial calcium had returned close to preischemic control values in both regions. Longer recirculation periods produced no further changes in the calcium content of mitochondria from the paramedian cortex. However, mitochondrial calcium was again increased in the dorsolateral striatum after 6 h (6.5 nmol of calcium/mg of protein) and 24 h (8.7 nmol of calcium/mg of protein) of recirculation. This regionally selective increase in calcium in the dorsolateral striatum preceded the period during which the majority of neurons in this region exhibit advanced degenerative changes. Thus, this increase may be an essential step, albeit a late one, in the development of neuronal loss.  相似文献   

3.
J E Lawson  R H Behal  L J Reed 《Biochemistry》1991,30(11):2834-2839
Disruption of the PDX1 gene encoding the protein X component of the mitochondrial pyruvate dehydrogenase (PDH) complex in Saccharomyces cerevisiae did not affect viability of the cells. However, extracts of mitochondria from the mutant, in contrast to extracts of wild-type mitochondria, did not catalyze a CoA- and NAD(+)-linked oxidation of pyruvate. The PDH complex isolated from the mutant cells contained pyruvate dehydrogenase (E1 alpha + E1 beta) and dihydrolipoamide acetyltransferase (E2) but lacked protein X and dihydrolipoamide dehydrogenase (E3). Mutant cells transformed with the gene for protein X on a unit-copy plasmid produced a PDH complex that contained protein X and E3, as well as E1 alpha, E1 beta, and E2, and exhibited overall activity similar to that of the wild-type PDH complex. These observations indicate that protein X is not involved in assembly of the E2 core nor is it an integral part of the E2 core. Rather, protein X apparently plays a structural role in the PDH complex; i.e., it binds and positions E3 to the E2 core, and this specific binding is essential for a functional PDH complex. Additional evidence for this conclusion was obtained with deletion mutations. Deletion of most of the lipoyl domain (residues 6-80) of protein X had little effect on the overall activity of the PDH complex. This observation indicates that the lipoyl domain, and its covalently bound lipoyl moiety, is not essential for protein X function. However, deletion of the putative subunit binding domain (residues approximately 144-180) of protein X resulted in loss of high-affinity binding of E3 and concomitant loss of overall activity of the PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract: The production of 14CO2 and [14C]acetylcholine from [U-14C]glucose was determined in vitro using tissue prisms prepared from the dorsolateral striatum (a region developing extensive neuronal loss following ischemia) and the paramedian neocortex (an ischemia-resistant region) following 30 min of forebrain ischemia and recirculation up to 24 h. Measurements were determined under basal conditions (5 mMK+) and following K+ depolarization (31 mM K+). The production of 14CO2 by the dorsolateral striatum was significantly reduced following 30 min of ischemia for measurements in either 5 or 31 mM K+ but recovered toward preischemic control values during the first hour of recirculation. Further recirculation resulted in 14CO2 production again being reduced relative to control values but with larger differences (20–27% reductions) detectable under depolarized conditions at recirculation times up to 6 h. Samples from the paramedian neocortex showed no significant changes from control values at all time points examined. [14C]Acetylcholine synthesis, a marker of cholinergic terminals that is sensitive to changes in glucose metabolism in these structures, was again significantly reduced only in the dorsolateral striatum. However, even in this tissue, only small (nonstatistically significant) differences were seen during the first 6 h of recirculation, a finding suggesting that changes in glucose oxidation during this period were not uniform within all tissue components. The results of this study provide evidence that in a region susceptible to ischemic damage there were specific changes during early recirculation in the metabolic response to depolarization. This apparent inability to respond appropriately to an increased need for energy production could contribute to the further deterioration of cell function in vivo and ultimately to the death of some cells.  相似文献   

5.
Using Percoll density gradient centrifugation, free (nonsynaptosomal) mitochondria were isolated from the dorsal-lateral striatum and paramedian neocortex of rats during complete forebrain ischemia and reperfusion. Mitochondria prepared from either region after 30 min of ischemia showed decreased state 3 (ADP and substrate present) and uncoupled respiration rates (19-45% reductions) with pyruvate plus malate as substrates, whereas state 4 respiration (no ADP present) was preserved. At 6 h of recirculation, state 3 and uncoupled respiration rates for mitochondria from the paramedian neocortex (a region resistant to ischemic damage) were similar to or even increased compared with control values. By contrast, in mitochondria from the dorsal-lateral striatum (a region containing neurons susceptible to global ischemia), decreases in state 3 and uncoupled respiration rates (25 and 30% less than control values) were again observed after 6 h of recirculation. With succinate as respiratory substrate, however, no significant differences from control values were found in either region at this time point. By 24 h of recirculation, respiratory activity with either pyruvate plus malate or succinate was greatly reduced in samples from the dorsal-lateral striatum, probably reflecting complete loss of function in some organelles. In contrast with these marked changes in free mitochondria, the respiratory properties of synaptosomal mitochondria, assessed from measurements in unfractionated homogenates, were unchanged from controls in the dorsal-lateral striatum at each of the time points studied, but showed reductions (19-22%) during ischemia and after 24 h of recirculation in the paramedian neocortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A simple procedure is described for the purification of the pyruvate dehydrogenase complex and dihydrolipoamide dehydrogenase from Bacillus subtilis. The method is rapid and applicable to small quantities of bacterial cells. The purified pyruvate dehydrogenase complex (s0(20),w = 73S) comprises multiple copies of four different types of polypeptide chain, with apparent Mr values of 59 500, 55 000, 42 500 and 36 000: these were identified as the polypeptide chains of the lipoate acetyltransferase (E2), dihydrolipoamide dehydrogenase (E3) and the two types of subunit of the pyruvate decarboxylase (E1) components respectively. Pyruvate dehydrogenase complexes were also purified from two ace (acetate-requiring) mutants of B. subtilis. That from mutant 61142 was found to be inactive, owing to an inactive E1 component, which was bound less tightly than wild-type E1 and was gradually lost from the E2E3 subcomplex during purification. Subunit-exchange experiments demonstrated that the E2E3 subcomplex retained full enzymic activity, suggesting that the lesion was limited to the E1 component. Mutant 61141R elaborated a functional pyruvate dehydrogenase complex, but this also contained a defective E1 component, the Km for pyruvate being raised from 0.4 mM to 4.3 mM. The E1 component rapidly dissociated from the E2E3 subcomplex at low temperature (0-4 degrees C), leaving an E2E3 subcomplex which by subunit-exchange experiments was judged to retain full enzymic activity. These ace mutants provide interesting opportunities to analyse defects in the self-assembly and catalytic activity of the pyruvate dehydrogenase complex.  相似文献   

7.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

8.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

9.
Site-directed mutagenesis was performed in the protease-sensitive region, between the lipoyl and catalytic domains and in the catalytic domain, of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii. The interaction of the mutated enzymes with the peripheral components pyruvate dehydrogenase (E1p) and lipoamide dehydrogenase (E3) was studied by gel filtration experiments, analytical ultracentrifugation and reconstitution of the pyruvate dehydrogenase complex. Upon binding of peripheral components, the 24-subunit core of A. vinelandii wild-type E2p dissociates into tetramers. Four E1p or E3 dimers can bind to a tetramer. Binding is mutually exclusive, resulting in an active complex containing one E3 and three E1p dimers. Large deletions of the protease-sensitive region of E2p resulted in a total loss of the E1p and E3 binding. A small deletion (delta P361-R362) or the point mutation K367Q in the protease-sensitive region did not influence E3 binding, but affected E1p binding strongly, although with excess E1p almost complete reconstitution was reached. For E2p with the point mutation R416D in the N-terminal region of the catalytic domain only 16% overall activity could be measured in reconstituted complexes. This is due to a very weak E1p/E2p interaction, whereas the E3 binding was not affected. The point mutation R416D did not influence the catalytic activity of E2p, although a function for this residue in the formation of the active site was predicted from amino acid similarities with chloramphenicol acetyltransferase type III from Escherichia coli. Deletion of the complete Ala + Pro-rich sequence between the protease-sensitive region and the catalytic domain did not affect the enzymological properties of E2p, nor the affinity for E1p or E3. A further deletion of 20 N-terminal residues from the catalytic domain destroyed the E2p activity. From gel filtration experiments it was concluded that the quaternary structure was unaffected, as was E3 binding. E1p binding was lost and, in contrast to the wild-type enzyme, no dissociation of the core upon addition of E3 was observed. This mutant enzyme possesses, like E. coli E2p, six E3 binding sites and clearly shows that interaction of E3 or E1p with the E1p sites and dissociation are linked processes. It is concluded that the binding site for E3 is located on the N-terminal part of the protease-sensitive region. In contrast, the binding site for E1p consists of two regions, one located on the protease-sensitive region and one of the catalytic domain. These regions are separated by a flexible sequence of about 20 amino acids.  相似文献   

10.
J E Lawson  X D Niu  L J Reed 《Biochemistry》1991,30(47):11249-11254
The LAT1 gene encoding the dihydrolipoamide acetyltransferase component (E2) of the pyruvate dehydrogenase (PDH) complex from Saccharomyces cerevisiae was disrupted, and the lat1 null mutant was used to analyze the structure and function of the domains of E2. Disruption of LAT1 did not affect the viability of the cells. Apparently, flux through the PDH complex is not required for growth of S. cerevisiae under the conditions tested. The wild-type and mutant PDH complexes were purified to near-homogeneity and were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and enzyme assays. Mutant cells transformed with LAT1 on a unit-copy plasmid produced a PDH complex very similar to that of the wild-type PDH complex. Deletion of most of the putative lipoyl domain (residues 8-84) resulted in loss of about 85% of the overall activity, but did not affect the acetyltransferase activity of E2 or the binding of pyruvate dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), and protein X to the truncated E2. Similar results were obtained by deleting the lipoyl domain plus the first hinge region (residues 8-145) and by replacing lysine-47, the putative site of covalent attachment of the lipoyl moiety, by arginine. Although the lipoyl domain of E2 and/or its covalently bound lipoyl moiety were removed, the mutant complexes retained 12-15% of the overall activity of the wild-type PDH complex. Replacement of both lysine-47 in E2 and the equivalent lysine-43 in protein X by arginine resulted in complete loss of overall activity of the mutant PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The time course of the overall reaction catalyzed by the pyruvate dehydrogenase multienzyme complex produces an unexpectedly high lag (tau = 8 S) even in the presence of saturating concentrations of its substrates. The preincubation of the pyruvate dehydrogenase complex with one of the substrates alone decreases the duration of this lag, and all the substrates of the pyruvate dehydrogenase component (E1) and dihydrolipoyl transacetylase component (E2) together (pyruvate, thiamine pyrophosphate, and CoA) result in the complete disappearance of the lag. The reduction of the dihydrolipoyl dehydrogenase component (E3) of the pyruvate dehydrogenase complex with the substrates of the complex in the absence of NAD+ produces significantly different quenching in the FAD fluorescence, and then the reduction with the substrates of E3 as dihydrolipoic acid and dithioerythritol. (The formation of FADH2 was not observed in the system.) The higher fluorescence quenching in the presence of substrates of pyruvate dehydrogenase complex compared to the effect caused by the substrates of the E3 component (dihydrolipoic acid and DTE) indicates conformational changes additionally manifested in the fluorescence properties of the enzyme complex. The substrate-induced quenching of the enzyme-bound FAD fluorescence shows biphasic kinetics. The rate constant of the slow phase is comparable with the rate constant calculated from the time duration of the lag phase observed in the overall reaction. The kinetic analysis of both intensity and anisotropy decrease of the FAD fluorescence suggests a consecutive transmittance of an all substrate-coordinated, induced conformational changes directed from the pyruvate dehydrogenase-via the lipoyl transacetylase--to the lipoyl dehydrogenase. Two simultaneous conformational effects caused by binding of the substrates can be distinguished; one of them results the fluorescence of the bound FAD to be more quenched, while the other makes the FAD more mobile. The first-order rate constants of both these conformational changes were determined. The present observations suggest that the pyruvate dehydrogenase complex exists in a partially inactive state in the absence of its substrates, and it becomes active due to conformational changes caused by the binding of its substrates.  相似文献   

12.
Branched-chain 2-oxo acid dehydrogenase complex was resolved into component E1 and E2-kinase subcomplex by gel filtration in the presence of 1 M-NaC1. Essentially all the original activity of the complex can be regained after reconstitution of the component enzymes, reassociation being a rapid process. The specific activities of E1 and E2 were 25.1 and 19.0 units/mg respectively. Non-phosphorylated active E1 has an approx. 6-fold higher affinity for E2 than does phosphorylated E1. The components of the branched-chain 2-oxo acid dehydrogenase complex do not crossreact with the respective components from the pyruvate dehydrogenase complex. The significance of these results and of the tight association of the kinase with E2 are discussed.  相似文献   

13.
To examine the stereospecific effects of lipoic compounds on pyruvate metabolism, the effects of R-lipoic acid (R-LA), S-lipoic acid (S-LA) and 1,2-diselenolane-3-pentanoic acid (Se-LA) on the activities of the mammalian pyruvate dehydrogenase complex (PDC) and its catalytic components were investigated. Both S-LA and R-LA markedly inhibited PDC activity; whereas Se-LA displayed inhibition only at higher concentrations. Examination of the effects on the individual catalytic components indicated that Se-LA inhibited the pyruvate dehydrogenase component; whereas R-LA and S-LA inhibited the dihydrolipoamide acetyltransferase component. The three lipoic compounds lowered dihydrolipoamide dehydrogrenase (E3) activity in the forward reaction by about 30 to 45%. The kinetic data of E3 showed that both R-LA and Se-LA are used as substrates by E3 for the reverse reaction. Decarboxylation of [1-14C]pyruvate via PDC by cultured HepG2 cells was not affected by R-LA, but moderately decreased with S-LA and Se-LA. These findings indicate that (i) purified PDC and its catalytic components are affected by lipoic compounds based on their stereoselectivity; and (ii) the oxidation of pyruvate by intact HepG2 cells is not inhibited by R-LA. The later finding with the intact cells is in support of therapeutic role of R-LA as an antioxidant.  相似文献   

14.
Electron cryo-microscopy of 'single particles' is a powerful method to determine the three-dimensional (3D) architectures of complex cellular assemblies. The pyruvate dehydrogenase multi-enzyme complex couples the activity of three component enzymes (E1, E2 and E3) in the oxidative decarboxylation of pyruvate to generate acetyl-CoA, linking glycolysis and the tricarboxylic acid cycle. We report here a 3D model for an 11 MDa, icosahedral pyruvate dehydrogenase sub-complex, obtained by combining a 28 A structure derived from electron cryo-microscopy with previously determined atomic coordinates of the individual E1 and E2 components. A key feature is that the E1 molecules are located on the periphery of the assembly in an orientation that allows each of the 60 mobile lipoyl domains tethered to the inner E2 core to access multiple E1 and E2 active sites from inside the icosahedral complex. This unexpected architecture provides a highly efficient mechanism for active site coupling and catalytic rate enhancement by the motion of the lipoyl domains in the restricted annular region between the inner core and outer shell of the complex.  相似文献   

15.
The pyruvate dehydrogenase (E1) and acetyltransferase (E2) components of pig heart and ox kidney pyruvate dehydrogenase (PDH) complex were separated and purified. The E1 component was phosphorylated (alpha-chain) and inactivated by MgATP. Phosphorylation was mainly confined to site 1. Addition of E2 accelerated phosphorylation of all three sites in E1 alpha and inactivation of E1. On the basis of histone H1 phosphorylation, E2 is presumed to contain PDH kinase, which was removed (greater than 98%) by treatment with p-hydroxymercuriphenylsulphonate. Stimulation of ATP-dependent inactivation of E1 by E2 was independent of histone H1 kinase activity of E2. The effect of E2 is attributed to conformational change(s) induced in E1 and/or E1-associated PDH kinase. PDH kinase activity associated with E1 could not be separated from it be gel filtration or DEAE-cellulose chromatography. Subunits of PDH kinase were not detected on sodium dodecyl sulphate/polyacrylamide gels of E1 or E2, presumably because of low concentration. The activity of pig heart PDH complex was increased by E2, but not by E1, indicating that E2 is rate-limiting in the holocomplex reaction. ATP-dependent inactivation of PDH complex was accelerated by E1 or by phosphorylated E1 plus associated PDH kinase, but not by E2 plus presumed PDH kinase. It is suggested that a substantial proportion of PDH kinase may accompany E1 when PDH complex is dissociated into its component enzymes. The possibility that E1 may possess intrinsic PDH kinase activity is considered unlikely, but may not have been fully excluded.  相似文献   

16.
Pseudomonads are the only organisms so far known to produce two lipoamide dehydrogenases (LPDs), LPD-Val and LPD-Glc. LPD-Val is the specific E3 component of branched-chain oxoacid dehydrogenase, and LPD-Glc is the E3 component of 2-ketoglutarate and possibly pyruvate dehydrogenases and the L-factor of the glycine oxidation system. Three mutants of Pseudomonas putida, JS348, JS350, and JS351, affected in lpdG, the gene encoding LPD-Glc, have been isolated; all lacked 2-ketoglutarate dehydrogenase, but two, JS348 and JS351, had normal pyruvate dehydrogenase activity. The pyruvate and 2-ketoglutarate dehydrogenases of the wild-type strain of P. putida were both inhibited by anti-LPD-Glc, but the pyruvate dehydrogenase of the lpdG mutants was not inhibited, suggesting that the mutant pyruvate dehydrogenase E3 component was different from that of the wild type. The lipoamide dehydrogenase present in one of the lpdG mutants, JS348, was isolated and characterized. This lipoamide dehydrogenase, provisionally named LPD-3, differed in molecular weight, amino acid composition, and N-terminal amino acid sequence from LPD-Glc and LPD-Val. LPD-3 was clearly a lipoamide dehydrogenase as opposed to a mercuric reductase or glutathione reductase. LPD-3 was about 60% as effective as LPD-Glc in restoring 2-ketoglutarate dehydrogenase activity and completely restored pyruvate dehydrogenase activity in JS350. These results suggest that LPD-3 is a lipoamide dehydrogenase associated with an unknown multienzyme complex which can replace LPD-Glc as the E3 component of pyruvate and 2-ketoglutarate dehydrogenases in lpdG mutants.  相似文献   

17.
The production of high-titre monospecific polyclonal antibodies against the purified pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart is described. The specificity of these antisera and their precise reactivities with the individual components of the complexes were examined by immunoblotting techniques. All the subunits of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes were strongly antigenic, with the exception of the common lipoamide dehydrogenase component (E3). The titre of antibodies raised against E3 was, in both cases, less than 2% of that of the other subunits. Specific immunoprecipitation of the dissociated N-[3H]ethylmaleimide-labelled enzymes also revealed that E3 alone was absent from the final immune complexes. Strong cross-reactivity with the enzyme present in rat liver (BRL) and ox kidney (NBL-1) cell lines was observed when the antibody against ox heart pyruvate dehydrogenase was utilized to challenge crude subcellular extracts. The immunoblotting patterns again lacked the lipoamide dehydrogenase band, also revealing differences in the apparent Mr of the lipoate acetyltransferase subunit (E2) from ox kidney and rat liver. The additional 50 000-Mr polypeptide, previously found to be associated with the pyruvate dehydrogenase complex, was apparently not a proteolytic fragment of E2 or E3, since it could be detected as a normal component in boiled sodium dodecyl sulphate extracts of whole cells. The low immunogenicity of the lipoamide dehydrogenase polypeptide may be attributed to a high degree of conservation of its primary sequence and hence tertiary structure during evolution.  相似文献   

18.
1. The reaction of the pyruvate dehydrogenase multienzyme complex of Escherichia coli with maleimides was examined. In the absence of substrates, the complex showed little or no reaction with N-ethylmaleimide. However, in the presence of pyruvate and N-ethylmaleimide, inhibition of the pyruvate dehydrogenase complex was rapid. Modification of the enzyme was restricted to the transacetylase component and the inactivation was proportional to the extent of modification. The lipoamide dehydrogenase activity of the complex was unaffected by the treatment. The simplest explanation is that the lipoyl groups on the transacetylase are reductively acetylated by following the initial stages of the normal catalytic cycle, but are thereby made susceptible to modification. Attempts to characterize the reaction product strongly support this conclusion. 2. Similarly, in the presence of N-ethylmaleimide and NADH, much of the pyruvate dehydrogenase activity was lost within seconds, whereas the lipoamide dehydrogenase activity of the complex disappeared more slowly: the initial site of the reaction with the complex was found to be in the lipoyl transacetylase component. The simplest interpretation of these experiments is that NADH reduces the covalently bound lipoyl groups on the transacetylase by means of the associated lipoamide dehydrogenase component, thereby rendering them susceptible to modification. However, the dependence of the rate and extent of inactivation on NADH concentration was complex and it proved impossible to inhibit the pyruvate dehydrogenase activity completely without unacceptable modification of the other component enzymes. 3. The catalytic reduction of 5,5'-dithiobis-(2-nitrobenzoic acid) by NADH in the presence of the pyruvate dehydrogenase complex was demonstrated. A new mechanism for this reaction is proposed in which NADH causes reduction of the enzyme-bound lipoic acid by means of the associated lipoamide dehydrogenase component and the dihydrolipoamide is then oxidized back to the disulphide form by reaction with 5,5'-dithiobis-(2-nitrobenzoic acid). 4. A maleimide with a relatively bulky N-substituent, N-(4-diemthylamino-3,5-dinitrophenyl)maleimide, was an effective replacement for N-ethylmaleimide in these reactions with the pyruvate dehydrogenase complex. 5. The 2-oxoglutarate dehydrogenase complex of E. coli behaved very similarly to the pyruvate dehydrogenase complex, in accord with the generally accepted mechanisms of the two enzymes. 6. The treatment of the 2-oxo acid dehydrogenase complexes with maleimides in the presence of the appropriate 2-oxo acid substrate provides a simple method for selectively inhibiting the transacylase components and for introducing reporter groups on to the lipoyl groups covalently bound to those components.  相似文献   

19.
The dihydrolipoamide acetyltransferase component (E2p) of the pyruvate dehydrogenase complex of Escherichia coli contains three highly homologous sequences of about 100 residues that are tandemly repeated to form the N-terminal half of the polypeptide chain. All three sequences include a lysine residue that is a site for lipoylation and they appear to form independently folded functional domains. These lipoyl domains are in turn linked to a much larger (about 300 residues) subunit-binding domain of the E2p chain that aggregates to form the octahedral inner core of the complex and also contains the acetyltransferase active site. In order to investigate whether individual lipoyl domains play different parts in the enzymic mechanism, selective deletions were made in vitro in the dihydrolipoamide acetyltransferase gene (aceF) so as to excise one or two of the repeating sequences. This was facilitated by the high degree of homology in these sequences, which allowed the creation of hybrid lipoyl domains that closely resemble the originals. Pyruvate dehydrogenase complexes incorporating these genetically reconstructed E2p components were purified and their structures were confirmed. It was found that the overall catalytic activity, the system of active site coupling, and the ability to complement pyruvate dehydrogenase complex mutants, were not significantly affected by the loss of one or even two lipoyl domains per E2p chain. No special role can be attached thus far to individual lipoyl domains. On the other hand, certain genetic deletions affecting the acetyltransferase domain caused inactivation of the complex, highlighting particularly sensitive areas of that part of the E2p chain.  相似文献   

20.
Four pyruvate dehydrogenase kinase and two pyruvate dehydrogenase phosphatase isoforms function in adjusting the activation state of the pyruvate dehydrogenase complex (PDC) through determining the fraction of active (nonphosphorylated) pyruvate dehydrogenase component. Necessary adaptations of PDC activity with varying metabolic requirements in different tissues and cell types are met by the selective expression and pronounced variation in the inherent functional properties and effector sensitivities of these regulatory enzymes. This review emphasizes how the foremost changes in the kinase and phosphatase activities issue from the dynamic, effector-modified interactions of these regulatory enzymes with the flexibly held outer domains of the core-forming dihydrolipoyl acetyl transferase component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号