首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The release of dopamine in the striatum, nucleus accumbens, and olfactory tubercle of anesthetized rats was evoked by electrical stimulation of the mesolimbic dopaminergic pathway (four pulses at 15 Hz or four pulses at 200 Hz). Carbon fiber electrodes were implanted in these regions to monitor evoked dopamine overflow by continuous amperometry. The kinetics of dopamine elimination were estimated by measuring the time to 50% decay of the dopamine oxidation current after stimulation ceased. This time ranged from 64 ms in the striatum to 113 ms in the nucleus accumbens. Inhibition of dopamine uptake by nomifensine (2–20 mg/kg), GBR 12909 (20 mg/kg), cocaine (20 mg/kg), mazindol (10 mg/kg), or bupropion (25 mg/kg) enhanced this decay time by up to +602%. Uptake inhibition also produced an increase in the maximal amplitude of dopamine overflow evoked by four pulses at 15 Hz. This latter effect was larger in the striatum (+420%) than in mesolimbic areas (+140%). These results show in vivo that these uptake inhibitors actually slow the clearance of dopamine released by action potentials and suggest that dopaminergic transmission is both prolonged and potentiated strongly by these drugs, in particular in the striatum.  相似文献   

2.
快速周期伏安法在定量研究脑内核团多巴胺释放中的应用   总被引:4,自引:0,他引:4  
目的和方法:采用快速周期伏安法(FCV)在体研究电刺激内侧前脑束(MFB)或腹侧背盖区(VTA)诱发的纹状体(CPu)、伏核(Acb)或中央杏仁核(CAN)多巴胺(DA)释放的特点,探索电刺激诱发不同核团DA释放的适宜刺激参数。结果:CPu、Acb与CAN的DA释放量及释放动力学特征均有不同。结论:在应用FCV技术研究脑内不同部位DA释放时,应重视适宜刺激参数的选择及运用,以获取更好的实验结果。  相似文献   

3.
1. Study was made of the action of 4-aminopyridine (5 X 10(-5) M) on synaptic transmission in the last abdominal ganglion of Periplaneta americana. The 'oil-gap' technique was used to record postsynaptic events in a single giant axon. 2. 4-AP quickly increased the 'background' of postsynaptic activity, which consisted of 'spontaneous' unitary EPSPs and IPSPs. Postsynaptic spikes were also propagated. 3. Both evoked EPSPs (stimulation of cercal nerve XI) and evoked IPSPs (stimulation of cercal nerve X) were greatly increased in amplitude although their duration (half-time) was unaltered. 4. 4-AP triggered presynaptic action potentials in the cercal nerves (recorded with external electrodes). These 'antidromic' potentials appeared singly or sometimes repetitively, especially after electrical stimulation of the cercal nerves. They were often in monosynaptic correlation with unitary EPSPs. 5. Neither the resting potential nor the postsynaptic membrane resistance was modified. 6. There were no changes in the equilibrium potentials of the ions involved in postsynaptic events. 7. The results may be essentially explained by an increase in transmitter release after 4-AP treatment, which may be partly the result of a rise in presynaptic terminal excitability, and partly the result of a lengthening of the presynaptic action potentials.  相似文献   

4.
D(2)-like antagonists potentiate dopamine release. They also inhibit dopamine uptake by a mechanism yet to be clarified. Here, we monitored dopamine uptake in the striatum of anesthetized mice. The dopamine overflow was evoked by brief electrical stimulation of the medial forebrain bundle (four pulses at 100 Hz) and was monitored with carbon fiber electrodes combined with continuous amperometry. The decay phase of evoked overflows reflects dopamine half-life, which entirely depends on uptake. The D(2)-like antagonists haloperidol and eticlopride enhanced the half-life by 45% and 48%, respectively, a moderate effect as compared to the uptake blocker nomifensine (528%). Both D(2)-like antagonists did not affect dopamine uptake in mice lacking D(2) receptors. Inhibition of tonic dopamine release by gamma-butyrolactone did not mimic the enhancing effect of D(2) antagonists on dopamine half-life. However, prolonged stimulation boosted dopamine uptake and this effect was not observed after haloperidol treatment or in mice lacking D(2) receptors. Therefore, dopamine uptake is accelerated in conditions of excessive D(2) stimulation but not finely tuned in resting conditions. Inhibition of dopamine uptake by D(2) antagonists synergizes with the potentiation of dopamine release to strongly alter the phasic dopamine signaling.  相似文献   

5.
Abstract: The release of [3H]dopamine (DA) and [14C]acetylcholine (ACh) was monitored from single slices of the rabbit striatum. In all cases, the evoked overflow of ACh showed a higher peak and was of shorter duration than that of 3H products. For ACh, the release per pulse showed a marked decline with increasing frequency of stimulation, whereas flat frequency-release curves were obtained for DA. At 0.1 and 1 Hz the evoked overflows of ACh were 15 and 7 times greater, respectively, than those of DA. Haloperidol (0.03 μM) and sulpiride (1 μM) produced large increases in the evoked overflow of DA and ACh at 3 and 10 Hz; little effect was observed at lower frequencies. These results indicate that the frequency-release curves for DA and ACh are different and that at high frequencies the slope of the curves is modified by activation of pre- and postsynaptic DA receptors. Apomorphine inhibited in a concentration-dependent fashion the evoked overflow of DA and ACh; greater inhibition was obtained at lower frequencies of stimulation. At 0.3 Hz the- DA agonist was two times more potent in inhibiting DA than ACh overflow (IC50: 12.0 ± 2.2 versus 22.0 ± 2.8 nM; p < 0.01). The greater sensitivity of pre-than postsynaptic sites to apomorphine was also seen at higher frequencies (3 Hz). Benztropine (1/μ) reduced the evoked overflow of ACh at 10 Hz, and enhanced that of 3H products at all rates of stimulation (0.3–10 Hz). These results suggest that the release of DA and ACh is regulated by dopaminergic receptors. They also indicate that the effects of DA agonists and antagonists and of uptake inhibitors on DA and ACh release are highly dependent on the frequency of stimulation used.  相似文献   

6.
The nigrostriatal dopaminergic system of rats was unilaterally lesioned with 6-hydroxydopamine. Part of the animals was grafted 2 weeks later with fetal dopaminergic cells on the lesioned side; untreated rats of the same strain served as controls. Both 3 and 12-14 months after surgery the striatal dopamine (DA) content and the in vivo rotational response following injection of D-amphetamine showed significant changes in grafted as compared to lesioned animals. At 12-14 months after transplantation, the electrically evoked release of tritiated DA and acetylcholine (ACh) in slices (preincubated with [3H]DA or [3H]choline, respectively) of striata of intact, lesioned, or grafted animals was also investigated. Electrical field stimulation of striatal slices of the lesioned side did not evoke any significant [3H]DA overflow, whereas a marked [3H]DA release was observed in slices of grafted and control striata. Moreover, both DL-amphetamine (3 microM) and nomifensine (10 microM) strongly enhanced basal 3H outflow in these slices. Electrically evoked [3H]ACh release was significantly reduced in slices from all striatal tissues by 0.01 microM apomorphine. In slices from denervated striata a clearcut hypersensitivity for this action of apomorphine was present, indicating supersensitivity of DA receptors on cholinergic terminals; this hypersensitivity was significantly reduced in graft-bearing striata. Furthermore, because this hypersensitivity was unchanged in slices of lesioned striata under stimulation conditions (four pulses/100 Hz) avoiding inhibition by endogenously released DA, it is concluded that lesion-induced DA receptor supersensitivity is caused by an increase in receptor density or efficacy rather than by a decreased competition between endogenous and exogenous agonists. Both reuptake blockade of DA with nomifensine (10 microM) and release of endogenous DA by DL-amphetamine (3 microM) potently reduced [3H]ACh release only in control and grafted but not in lesioned tissue. In experiments using potassium-evoked [3H]ACh release, tetrodotoxin had no effect on the inhibitory activity of amphetamine and nomifensine, indicating that the DA receptors involved in their indirect inhibitory action are located directly on the cholinergic terminals.  相似文献   

7.
Abstract: The present study demonstrates that S (-)-nornicotine evoked a concentration-dependent increase in dopamine (DA) release from superfused rat striatal slices. The increase in DA release was indicated by an S (-)-nornicotine-induced overflow of endogenous 3,4-dihydroxyphenyl-acetic acid (DOPAC) in the striatal superfusate and by an S (-)-nornicotine-induced increase in tritium overflow from striatal slices preloaded with [3H]DA. Low concentrations (0.01–1.0 μ M ) of S (-)-nornicotine, which did not evoke endogenous DOPAC overflow, also were unable to modulate electrically evoked DOPAC overflow. The increase in DOPAC overflow induced by S (-)-nornicotine was compared with that produced by S (-)-nicotine. Comparing equimolar concentrations (0.1-100 μ M ) of S (-)-nornicotine and S (-)-nicotine, superfusion with S (-)-nornicotine resulted in a significantly greater DOPAC overflow. In contrast to the effect of S (-)-nicotine, S (-)-nornicotine evoked a sustained increase in DOPAC over-flow for the entire period of S (-)-nornicotine exposure. Furthermore, DOPAC overflow evoked by S (-)-nornicotine in control Krebs buffer was inhibited by superfusion with a low-calcium buffer. Moreover, in the low-calcium buffer, DOPAC overflow induced by 30 and 100 μ M S (-)-nornicotine was not different from that with no S (-)-nornicotine. The results indicate that S (-)-nornicotine, a constituent of tobacco products and a known metabolite of S (-)-nicotine, increases DA release in a calcium-dependent manner in superfused rat striatal slices. It is interesting that unlike S (-)-nicotine, there does not appear to be desensitization to this effect of S (-)-nornicotine.  相似文献   

8.
Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here, we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine K(m) and V(max) for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH.  相似文献   

9.
Nicotine binds to nicotinic acetylcholine receptors on dopaminergic terminals to evoke dopamine (DA) release. The clearance of released DA occurs rapidly through reuptake into nerve terminals through the DA transporter (DAT). However, whether nicotine modulates DAT function in vivo is still not well understood. In the present study, we determined the effect of nicotine on DA clearance using in vivo amperometric recording in the striatum of urethane-anesthetized rats. Stable DA release was evoked by electrical stimulation of the medial forebrain bundle (MFB). Subsequently, nicotine or saline was administered with MFB stimulation at 10-min intervals for 60 min. Kinetic analysis revealed that nicotine decreased the amplitude of DA overflow and the maximal DA clearance rate (V(max)) in response to stimulation of 96 pulses at 80 Hz. Surprisingly, nicotine enhanced the maximal DA clearance rate (V(max)) by stimulation of 768 pulses at 80 Hz. Furthermore, we found that this paradoxical effect of nicotine on V(max) depended on the stimulation pattern. These results suggest that nicotine may exert its addictive role by dynamically modulating DAT function in vivo.  相似文献   

10.
Abstract: The present experiments assessed the effects of SR 48692, a selective nonpeptide antagonist of neurotensin receptors, on mesolimbic dopaminergic neurotransmission. Dopamine release evoked by the electrical stimulation of the median forebrain bundle (20 Hz, 10 s) was measured in the nucleus accumbens of urethane-anesthetized rats using differential pulse amperometry combined with carbon fiber electrodes. SR 48692 (0.1 mg/kg, i.p.) alone did not affect this release, whereas it dose-dependently (0.03–1 mg/kg, i.p.) enhanced the haloperidol (50 µg/kg, i.p.)-induced facilitation of the electrically evoked DA release. The increase induced by haloperidol (92 ± 26% above control values 30 min after injection) was potentiated by SR 48692 (264 ± 75% at 0.03 mg/kg, 428 ± 113% at 0.1 mg/kg, and 480 ± 135% at 1 mg/kg). Effects identical to those of SR 48692 were obtained with SR 48527, a chemically related compound with a high affinity for neurotensin receptors, but not with SR 49711, its low-affinity antipode. The potentiating effects of SR 48692 were positively related to the stimulation frequency (from 6 to 20 Hz) and to the dose of haloperidol (from 12.5 to 50 µg/kg) and were abolished after prior kainic acid lesion (1 µg/1 µl) of the nucleus accumbens. Thus, the effects of SR 48692 required the integrity of postsynaptic elements of the nucleus accumbens and occurred under the combination of two, at least partly, interdependent conditions: strong D2 autoreceptor blockade and high-intensity stimulation likely to release neurotensin. It is interesting that these potentiating effects of SR 48692 did not appear in the striatum. In conclusion, these findings suggest that endogenous neurotensin may attenuate the facilitation of D2 receptor blockade on mesolimbic but not nigrostriatal dopamine transmission.  相似文献   

11.
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.  相似文献   

12.
It has been shown on neuro-muscular preparations of frog sartorius muscle that chromium ions in the concentrations 1-4 x 10(-6) g/ml strengthen spontaneous and evoked transmitter release. Cr3+ ions in the concentrations above 4 x 10(-6) g/ml decrease the membrane potential of muscle fibres, decrease the quantum content of the end plate potentials. Experiments on a single Ranvier node have shown that Cr3+ ions decrease the amplitude, increase the rate and duration of the action potential of a nerve fibre. It is concluded that chromium ions produce a pronounced effect on synaptic transmission, which differs significantly from the action of manganese, cobalt and nickel ions.  相似文献   

13.
The technique of in vivo voltametry and a paired recording paradigm were employed to study the age-related changes in N-methyl-d-aspartate (NMDA) function in regulating the striatal dopaminergic transmission in male Sprague-Dawley rats. Microinjection of NMDA (100pmol) consistently elicited larger striatal dopamine (DA) overflows from young rats (3-4 months old) than from aged rats (27-28 months old). Furthermore, the rate of clearance (T(c)) of the NMDA-evoked dopamine release was lower in the aged rats. Local application of dopamine evoked reversible electrochemical signals with similar amplitudes in both young and aged rats. However, T(c) was reduced and time course parameters were prolonged in the aged rats. While microejection of NMDA (1pmol) did not induce any dopamine overflow, simultaneous administration of NMDA and K(+) evoked larger dopamine releases than K(+) alone in the young striatum. Concomitant application of NMDA did not potentiate the K(+)-evoked dopamine release in the aged striatum. Taken together, with the reduced dopamine release in response to depolarizing stimuli, our in vivo electrochemical data suggest that age-related changes in NMDA function contribute to the impaired dopaminergic dynamics, including an attenuation of NMDA-evoked dopamine release and a diminished augmentation by K(+) of NMDA-induced dopamine release during the normal aging process.  相似文献   

14.
Electrically evoked dopamine release as measured by voltammetry in the rat striatum is heterogeneous in both amplitude and temporal profile. Previous studies have attributed this heterogeneity to variations in the density of dopamine (DA) terminals at the recording site. We reach the alternate conclusion that the heterogeneity of evoked DA release derives from variations in the extent to which DA terminals are autoinhibited. We demonstrate that low-amplitude, slow evoked DA responses occur even though recording electrodes are close to DA terminals. Moreover, the D2 agonist and antagonist, quinpirole and raclopride, respectively, affect the slow responses in a manner consistent with the known functions of pre-synaptic D2 autoreceptors. Recording sites that exhibit autoinhibited responses are prevalent in the dorsal striatum. Autoinhibition preceded electrical stimulation, which is consistent with our prior reports that the striatum contains a tonic pool of extracellular DA at basal concentrations that exceed the affinity of D2 receptors. We conclude that the striatum contains DA terminals operating on multiple time courses, determined at least in part by the local variation in autoinhibition. Thus, we provide direct, real-time observations of the functional consequence of tonic and phasic DAergic signaling in vivo .  相似文献   

15.
Electrically stimulated dopamine (DA) release (overflow) and uptake were measured with in vivo voltammetry in the nucleus accumbens (N ACC) of anesthetized rats that had previously received repeated cocaine treatments. Electrically stimulated DA release was induced by a 10-s stimulation in the medial forebrain bundle (2-ms, 200-microA, biphasic pulses at 100 Hz). DA overflow and uptake were measured with fast chronoamperometry using a Nafion-plated, carbon fiber electrode. Animals given repeated doses of cocaine (10 mg/kg s.c. from day 1 to 5, 20 mg/kg s.c. from day 6 to 10) showed marked increases in DA uptake (5.47 +/- 0.28 vs. 2.93 +/- 0.26 microM/s) and in stimulated DA overflow (27.3 +/- 1.1 vs. 18.9 +/- 1.3 microM) compared with DA uptake and stimulated overflow in saline control animals. The increased uptake was shown to be independent of the increased overflow. Uptake was monitored as a function of stimulation current, and the data were extrapolated to zero stimulation, resulting in calculated rates of uptake of 2.43 and 3.71 microM/s in the control and cocaine-treated groups, respectively. These effects were found to be temporary, as there were no significant differences in stimulated release or uptake between saline control animals and animals given 10 days of cocaine followed by a 10-day abstinence period. These alterations in the N ACC produced by repeated cocaine administration may be a compensatory response to prolonged uptake blockade of synaptic DA.  相似文献   

16.
Dopamine (DA) neurons release DA not only from axon terminals at the striatum, but from their somata and dendrites at the substantia nigra pars compacta (SNc). Released DA may auto-regulate further DA release or modulate non-DA cells. However, the actual mechanism of somatodendritic DA release, especially the Ca2+ dependency of the process, remains controversial. In this study, we used amperometry to monitor DA release from somata of acutely isolated rat DA neurons. We found that DA neurons spontaneously released DA in the resting state. Removal of extracellular Ca2+ and application of blockers for voltage-operated Ca2+ channels (VOCCs) suppressed the frequency of secretion events. Activation of VOCCs by stimulation with K+-rich saline increased the frequency of secretion events, which were also sensitive to blockers for L- and T-type Ca2+ channels. These results suggest that Ca2+ influx through VOCCs regulates DA release from somata of DA neurons.  相似文献   

17.
We examined the effect of chronic nicotine treatment on dopaminergic activity by measuring the effects of D1 and D2 dopamine (DA) receptor agonists and antagonists on tritium release from mouse striatum preloaded with [3H]DA. The radioactivity released during superfusion was separated on alumina columns and the distribution and efflux of [3H]DA and its main 3H-labeled metabolites were quantified. After preloading by incubation with [3H]DA, the electrical stimulation-evoked tritium overflow was higher in striatum prepared from nicotine-treated mice, whereas in vitro addition of nicotine caused a similar increase in tritium release from striatum of untreated and chronic nicotine-treated mice. The overflow of [3H]DA and its 3H-metabolites exhibited similar distribution patterns in [3H]DA-preloaded striatum dissected from untreated and chronic nicotine-pretreated mice, indicating that repeated injections with nicotine did not alter the metabolism of [3H]DA taken up by the tissue. (-)-Quinpirole, a selective agonist for D2 DA receptors, and apomorphine, a nonselective D1/D2 agonist, inhibited the electrical stimulation-induced tritium efflux from striatum of untreated mice, whereas (+/-)-sulpiride, a D2 DA receptor antagonist, enhanced the evoked release of tritium. These changes in tritium efflux effected by (-)-quinpirole and (+/-)-sulpiride reflected changes in [3H]DA release and not in DA metabolism, as shown by separation of the released radioactivity on alumina columns. The D1 receptor agonist (+/-)-SKF-38393 did not affect the tritium overflow, whereas the D1 receptor antagonist (+)-SCH-23390 exerted a stimulatory action but only at a high concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Exposure to amphetamine (AMPH) in vivo produces an enduring enhancement ('sensitization') in AMPH-stimulated striatal DA release in vitro. Experiments were conducted to determine whether striatal DA release evoked by neuronal depolarization is altered by AMPH pretreatment in a similar manner. It was found that AMPH pretreatment produced a long-lasting (at least one week) enhancement in striatal DA release evoked by AMPH, KCl or electrical field stimulation. In contrast, the basal rate of DA efflux was not altered by pretreatment condition. A mechanism by which a single change in the intracellular distribution of DA could enhance both AMPH- and depolarization-induced DA release is proposed.  相似文献   

19.
Calcitriol, the active metabolite of vitamin D, has been shown to have significant effects on the brain. These actions include reducing the severity of some central nervous system lesions, possibly by upregulating trophic factors such as glial cell line-derived neurotrophic factor (GDNF). GDNF has substantial effects on the nigrostriatal dopamine (DA) system of young adult, aged and lesioned animals. Thus, the administration of calcitriol may lead to significant effects on nigrostriatal DA neuron functioning. The present experiments were designed to examine the ability of calcitriol to alter striatal DA release, and striatal and nigral tissue levels of DA. Male Fischer-344 rats were administered vehicle or calcitriol (0.3, 1.0, or 3.0 μg/kg, s.c.) once daily for eight consecutive days. Three weeks later in vivo microdialysis experiments were conducted to measure basal and stimulus evoked overflow of DA from the striatum. Basal levels of extracellular DA were not significantly affected by the calcitriol treatments. However, the 1.0 and 3.0 μg/kg doses of calcitriol led to increases in both potassium and amphetamine evoked overflow of striatal DA. Although post-mortem tissue levels of striatal DA were not altered by the calcitriol injections, nigral tissue levels of DA and its main metabolites were increased by both the 1.0 and 3.0 μg/kg doses of calcitriol. In a separate group of animals GDNF levels were augmented in the striatum and substantia nigra after eight consecutive daily injections of calcitriol. These results suggest that systemically administered calcitriol can upregulate dopaminergic release processes in the striatum and DA levels in the substantia nigra. Increases in the levels of endogenous GDNF following calcitriol treatment may in part be responsible for these changes. The ability of calcitriol to lead to augmented DA release in the striatum suggests that calcitriol may be beneficial in disease processes involving dopaminergic dysfunction.  相似文献   

20.
Dopamine Autoreceptors Modulate Dopamine Release from the Prefrontal Cortex   总被引:6,自引:2,他引:4  
Electrical stimulation (at 0.3, 1, or 10 Hz, 120 pulses each) produced a calcium-dependent overflow of radioactivity from slices of the rabbit prefrontal cortex preloaded with [3H]3,4-dihydroxyphenylethylamine ([3H]DA, [3H]dopamine) in the presence of desipramine. Flat frequency-release curves were observed. Apomorphine and LY-171555 inhibited in a concentration-dependent fashion the evoked overflow of DA, an effect antagonized by haloperidol. Stimulation frequencies comparable to normal firing rates of mesocortical neurons (10 Hz) drastically reduced apomorphine-induced inhibition of DA overflow. Haloperidol produced greater facilitation of DA overflow at 10 than at 1 Hz. Nomifensine, a neuronal uptake inhibitor, enhanced DA overflow. These results indicate that mesocortical DA neurons projecting to the prefrontal cortex have release modulatory autoreceptors of the D2 subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号