首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible mechanism of membrane fusion   总被引:6,自引:0,他引:6  
M M Kozlov  V S Markin 《Biofizika》1983,28(2):242-247
The stalker mechanism of membrane fusion was considered. Initiation and evolution of monolayer and bilayer bridges-stalks between the membranes were studied. From the expression of elastic energy of the stalk the value of spontaneous curvature of its membrane Ks at which the bridge may appear, was found. It was shown that in terms of the stalker mechanism formation of the stalk of the final radius or complete fusion were possible Ks values for realizing this or that variant were found. The energetic barrier of hydrophobic interaction and the barrier of elastic energy which the membranes had to overcome for stalker formation were found. The experimental data on the fusion of small and large liposomes were analysed.  相似文献   

2.
Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.  相似文献   

3.
Infection by enveloped viruses requires fusion between the viral and cellular membranes, a process mediated by specific viral envelope glycoproteins. Information from studies with whole viruses, as well as protein dissection, has suggested that the fusion glycoprotein (F) from Paramyxoviridae, a family that includes major human pathogens, has two hydrophobic segments, termed fusion peptides. These peptides are directly responsible for the membrane fusion event. The recently determined three-dimensional structure of the pre-fusion conformation of the F protein supported these predictions and enabled the formulation of: (1) a detailed model for the initial interaction between F and the target membrane, (2) a new model for Paramyxovirus-induced membrane fusion that can be extended to other viral families, and (3) a novel strategy for developing better inhibitors of paramyxovirus infection.  相似文献   

4.
Paramyxovirus infects cells by initially attaching to a sialic acid-containing cellular receptor and subsequently fusing with the plasma membrane of the cells. Hemagglutinin-neuraminidase (HN) protein, which is responsible for virus attachment, interacts with the fusion protein in a virus type-specific manner to induce efficient membrane fusion. To elucidate the mechanism of HN-promoted membrane fusion, we characterized a series of Newcastle disease virus HN proteins whose surface residues were mutated. Fusion promotion activity was substantially altered in only the HN proteins with a mutation in the first or sixth beta sheet. These regions overlap the large hydrophobic surface of HN; thus, the hydrophobic surface may contain the fusion promotion domain. Furthermore, a comparison of the HN structure crystallized alone or in complex with 2-deoxy-2,3-dehydro-N-acetylneuraminic acid revealed substantial conformational changes in several loops within or near the hydrophobic surface. Our results suggest that the binding of HN protein to the receptor induces the conformational change of residues near the hydrophobic surface of HN protein and that this change triggers the activation of the F protein, which initiates membrane fusion.  相似文献   

5.
On the theory of membrane fusion. The stalk mechanism   总被引:7,自引:0,他引:7  
Based on literary data, conditions necessary for membrane fusion are discussed. It is proposed that fusion mechanisms should be classified according to the primary act involving a change in the membrane structure. Two principal fusion mechanisms are identified: the stalk mechanism, starting with the appearance of a stalk between approaching membranes, and the adhesion mechanism which involves bilayer reorganization as a result of a tight junction of the membranes. The origin and evolution of the monolayer and bilayer stalks between membranes are analysed. Using the expression for the elastic energy of the stalk it was possible to find the value of the spontaneous curvature of its membrane, Ks, at which the existence of a stalk is in principle possible. It is shown that, within the framework of the stalk mechanism, there exists a possibility of either the formation of a stalk of a finite radius, or complete fusion. The Ks values have been determined at which one of the variants occur. The energy barrier of the hydrophobic interaction and the elastic energy barrier, which have to be overcome by the membranes to form the stalk are analysed. The theoretical analysis of the stalk formation mechanism is supported by experimental data. It has been shown by freeze-fracture electron microscopy that the addition of Ca+2, Mg+2, Mn+2 or Cd+2 to suspensions of egg phosphatidylcholine and cardiolipin (1:1 or 3:1) leads to the formation of numerous intramembrane particles (imp's) and crater-like (stalk) structures.  相似文献   

6.
In this study, we investigated in a flavivirus model (tick-borne encephalitis virus) the mechanisms of fusion inhibition by monoclonal antibodies directed to the different domains of the fusion protein (E) and to different sites within each of the domains by using in vitro fusion assays. Our data indicate that, depending on the location of their binding sites, the monoclonal antibodies impaired early or late stages of the fusion process, by blocking the initial interaction with the target membrane or by interfering with the proper formation of the postfusion structure of E, respectively. These data provide new insights into the mechanisms of flavivirus fusion inhibition by antibodies and their possible contribution to virus neutralization.  相似文献   

7.
A mathematical model of one of the mechanisms of membrane fusion is described. From the model, it follows that when the outer leaflet of a membrane formed of bilayer stabilizing phospholipids is enlarged over the inner leaflet, convexities are formed on the membrane surface. This asymmetric enlargement of the outer layer over the inner layer occurs when fusogenic peptides, such as cobra venom cytotoxin and bee venom melittin, interact with the outer membrane monolayer. This phenomenon facilitates not only membrane fusion, but it might also play an important role in physiological processes, such as inter- and intracellular communications and cellular motility.  相似文献   

8.
Structural and functional analyses have revealed remarkable mechanistic similarities between viral and intracellular fusion. Both fusion processes are driven by an orchestrated cascade of protein binding and folding reactions. After an initial tethering step, activation of the fusion machinery links the opposing membranes and protein folding pulls the membranes in close proximity; fusion pores form, open and dilate, and the process culminates in the complete merging of the lipid bilayers. Viral fusion is mediated by a single fusion protein, whereas the intracellular fusion machinery is split into matching halves, the v- and t-SNAREs. SNAREs, together with synaptotagmins, emerge as the key machinery for regulated exocytosis.  相似文献   

9.
Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses.  相似文献   

10.
Substantial progress has been made in recent years to augment the current understanding of structures and interactions that promote viral membrane fusion. This progress is reviewed with a particular emphasis on recently determined structures of viral fusion domains and their interactions with lipid membranes. The results from the different structural and thermodynamic experimental approaches are synthesized into a new proposed mechanism, termed the "spring-loaded boomerang" mechanism of membrane fusion, which is presented here as a hypothesis.  相似文献   

11.
Substantial progress has been made in recent years to augment the current understanding of structures and interactions that promote viral membrane fusion. This progress is reviewed with a particular emphasis on recently determined structures of viral fusion domains and their interactions with lipid membranes. The results from the different structural and thermodynamic experimental approaches are synthesized into a new proposed mechanism, termed the “spring-loaded boomerang” mechanism of membrane fusion, which is presented here as a hypothesis.  相似文献   

12.
13.
Secretion and membrane fusion are fundamental cellular processes involved in the physiology of health and disease. Studies within the past decade reveal the molecular mechanism of secretion and membrane fusion in cells. Studies reveal that membrane-bound secretory vesicles dock and fuse at porosomes, which are specialized plasma membrane structures. Swelling of secretory vesicles result in a build-up of intravesicular pressure, which allows expulsion of vesicular contents. The discovery of the porosome, its isolation, its structure and dynamics at nm resolution and in real time, its biochemical composition and functional reconstitution, are discussed. The molecular mechanism of secretory vesicle fusion at the base of porosomes, and vesicle swelling, have been resolved. With these findings a new understanding of cell secretion has emerged and confirmed by a number of laboratories.  相似文献   

14.
We have investigated the contribution of various phospholipids to membrane fusion induced by divalent cations. Fusion was followed by means of a new fluorescence assay monitoring the mixing of internal aqueous contents of large (0.1 μm diameter) unilamellar liposomes. The rate and extent of fusion induced by Ca2+ in mixed phosphatidylserine/phosphatidylcholine vesicles were lower compared to those in pure phosphatidylserine vesicles. The presence of 50% phosphatidylcholine completely inhibited fusion, although the vesicles aggregated upon Ca2+ addition. When phosphatidylserine was mixed with phosphatidylethanolamine, however, rapid fusion could be induced by Ca2+ even in mixtures that contained only 25% phosphatidylserine. Phosphatidylethanolamine also facilitated fusion by Mg2+ which could not fuse pure phosphatidylserine vesicles. In phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine mixtures, in which the phosphatidylcholine content was kept at 25%, phosphatidylethanolamine could not substitute for phosphatidylserine, and the fusogenic capacity of Mg2+ was abolished by the presence of merely 10% phosphatidylcholine. The initial rate of release of vesicle contents was slower than the rate of fusion in all the mixtures used. The presence of phosphate effected a considerable decrease in the threshold concentration of Ca2+ and also enhanced  相似文献   

15.
16.
Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories. Therefore its creation it is not the rate-limiting process. The relevant barrier is associated with the rather limited radial expansion of the stalk into a hemifusion diaphragm. It is strongly affected by the architecture of the amphiphile, decreasing as the effective spontaneous curvature of the amphiphile is made more negative. It is also reduced when the tension is increased. At high tension the fusion pore, created when a hole forms in the hemifusion diaphragm, expands without bound. At very low membrane tension, small fusion pores can be trapped in a flickering metastable state. Successful fusion is severely limited by the architecture of the lipids. If the effective spontaneous curvature is not sufficiently negative, fusion does not occur because metastable stalks, whose existence is a seemingly necessary prerequisite, do not form at all. However if the spontaneous curvature is too negative, stalks are so stable that fusion does not occur because the system is unstable either to a phase of stable radial stalks, or to an inverted-hexagonal phase induced by stable linear stalks. Our results on the architecture and tension needed for successful fusion are summarized in a phase diagram.  相似文献   

17.
We have carried out extensive Monte Carlo simulations of the fusion of tense apposed bilayers formed by amphiphilic molecules within the framework of a coarse-grained lattice model. The fusion pathway differs from the usual stalk mechanism. Stalks do form between the apposed bilayers, but rather than expand radially to form an axial-symmetric hemifusion diaphragm of the trans leaves of both bilayers, they promote in their vicinity the nucleation of small holes in the bilayers. Two subsequent paths are observed. 1) The stalk encircles a hole in one bilayer creating a diaphragm comprised of both leaves of the other intact bilayer, which ruptures to complete the fusion pore. 2) Before the stalk can encircle a hole in one bilayer, a second hole forms in the other bilayer, and the stalk aligns and encircles them both to complete the fusion pore. Both pathways give rise to mixing between the cis and trans leaves of the bilayer and allow for transient leakage.  相似文献   

18.
BACKGROUND: Membrane fusion within the Paramyxoviridae family of viruses is mediated by a surface glycoprotein termed the "F", or fusion, protein. Membrane fusion is assumed to involve a series of structural transitions of F from a metastable (prefusion) state to a highly stable (postfusion) state. No detail is available at the atomic level regarding the metastable form of these proteins or regarding the transitions accompanying fusion. RESULTS: The three-dimensional structure of the fusion protein of Newcastle disease virus (NDV-F) has been determined. The trimeric NDV-F molecule is organized into head, neck, and stalk regions. The head is comprised of a highly twisted beta domain and an additional immunoglobulin-like beta domain. The neck is formed by the C-terminal extension of the heptad repeat region HR-A, capped by a four-helical bundle. The C terminus of HR-A is encased by a further helix HR-C and a 4-stranded beta sheet. The stalk is formed by the remaining visible portion of HR-A and by polypeptide immediately N-terminal to the C-terminal heptad repeat region HR-B. An axial channel extends through the head and neck and is fenestrated by three large radial channels located approximately at the head-neck interface. CONCLUSION: We propose that prior to fusion activation, the hydrophobic fusion peptides in NDV-F are sequestered within the radial channels within the head, with the central HR-A coiled coil being only partly formed. Fusion activation then involves, inter alia, the assembly of a complete HR-A coiled coil, with the fusion peptides and transmembrane anchors being brought into close proximity. The structure of NDV-F is fundamentally different than that of influenza virus hemagglutinin, in that the central coiled coil is in the opposite orientation with respect to the viral membrane.  相似文献   

19.
Oligonucleotide-directed mutagenesis of a cDNA encoding the hemagglutinin of influenza virus has been used to introduce single base changes into the sequence that codes for the conserved apolar "fusion peptide" at the amino-terminus of the HA2 subunit. The mutant sequences replaced the wild-type gene in SV40-HA recombinant virus vectors, and the altered HA proteins were expressed in simian cells. Three mutants have been constructed that introduce single, nonconservative amino acid changes in the fusion peptide, and three fusion phenotypes were observed: substitution of glutamic acid for the glycine residue at the amino-terminus of HA2 abolished all fusion activity; substitution of glutamic acid for the glycine residue at position 4 in HA2 raised the threshold pH and decreased the efficiency of fusion; and, finally, extension of the hydrophobic stretch by replacement of the glutamic acid at position 11 with glycine yielded a mutant protein that induced fusion of erythrocytes with cells with the same efficiency and pH profile as the wild-type protein. However, the ability of this mutant to induce polykaryon formation was greatly impaired. Nevertheless, all the mutant proteins underwent a pH-dependent conformational change and bound to liposomes. These results are discussed in terms of the mechanism of HA-induced membrane fusion.  相似文献   

20.
The mechanism of Sendai virus membrane fusion to cultured cell membranes was studied. Viral lipids were labeled with the lipophilic dye, 4-(4-(dihexadecylamino)styryl-N-methylquinolinium iodine) (DiQ), and viral proteins were labeled using fluorescein isothiocyanate (FITC). The redistribution of these probes from the virus to cultured cells was followed using the technique of image correlation spectroscopy. This technique assayed the intensity change and the redistribution of these probes as fusion progressed from a more to less aggregated state. The lipid probe DiQ dispersed into the membrane of the target membrane at both 22 and 37 degrees C, while the FITC-labeled proteins dispersed only at 37 degrees C. Simultaneous labeling of virus with both of these probes showed that at 37 degrees C their redistribution proceeded at different rates. These data were consistent with the formation of a hemifusion intermediate during the fusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号