首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese peroxidase (Mn peroxidase) catalyses the oxidation of Mn(II) to Mn(III), a diffusible non-specific oxidant likely to be involved in the transformation of polyphenolic macromolecules from brown coal by the white-rot fungus Phanerochaete chrysosporium. We report here that solubilised macromolecules from Morwell brown coal were depolymerised by Mn(III) ions when incubated under hyperbaric O2. However, under N2 or air they were polymerised, suggesting that net depolymerisation by Mn(III) requires molecular oxygen to inhibit coupling of coal radicals. Coal macromolecules were also polymerised when separated by a semipermeable membrane from a culture of P. chrysosporium or from a solution of Mn peroxidase, Mn(II) and H2O2, probably by Mn(III) crossing the membrane. In oxygenated cultures in which Mn peroxidase␣was up-regulated by Mn(II), the extent of depolymerisation correlated with cumulative Mn peroxidase activity suggesting that Mn-peroxidase-generated Mn(III) has a central role in initial depolymerisation of coal molecules in vivo. However, mutant ME446-B17-1, which produces Mn peroxidase but not lignin peroxidase, polymerised coal macromolecules in oxygenated cultures. In sum, it appears Mn peroxidase can both polymerise and depolymerise brown coal macromolecules and that, in vivo, both hyperbaric O2 and lignin peroxidase are also required to force net depolymerisation to products assimilable by cells. Received: 4 September 1997 / Received revision: 29 January 1998 / Accepted: 30 January 1998  相似文献   

2.
The involvement of extracellular oxidases in biotransformation of low-rank coal was assessed by correlating the ability of nine white-rot and brown-rot fungi to alter macromolecular material in alkali-solubilised brown coal with the spectrum of oxidases they produce when grown on low-nitrogen medium. The coal fraction used was that soluble at 3.0?pH?6.0 (SWC6 coal). In 15-ml cultures, Gloeophyllum trabeum, Lentinus lepideus and Trametes versicolor produced little or no lignin peroxidase, manganese (Mn) peroxidase or laccase activity and caused no change to SWC6 coal. Ganoderma applanatum and Pycnoporus cinnabarinus also produced no detectable lignin or Mn peroxidases or laccase yet increased the absorbance at 400?nm of SWC6 coal. G. applanatum, which produced veratryl alcohol oxidase, also increased the modal apparent molecular mass. SWC6 coal exposed to Merulius tremellosus and Perenniporia tephropora, which secreted Mn peroxidases and laccase and Phanerochaete chrysosporium, which produced Mn and lignin peroxidases was polymerised but had unchanged or decreased absorbance. In the case of both P. chrysosporium and M. tremellosus, polymerisation of SWC6 coal was most extensive, leading to the formation of a complex insoluble in 100?mM NaOH. Rigidoporus ulmarius, which produced only laccase, both polymerised and reduced the A 400 of SWC6 coal. P. chrysosporium, M. tremellosus and P. tephropora grown in 10-ml cultures produced a spectrum of oxidases similar to that in 15-ml cultures but, in each case, caused more extensive loss of A 400, and P. chrysosporium depolymerised SWC6 coal. It is concluded that the extracellular oxidases of white-rot fungi can transform low-rank coal macromolecules and that increased oxygen availability in the shallower 10-ml cultures favours catabolism over polymerisation.  相似文献   

3.
Indirect evidence has suggested that lignin peroxidase (LiP) of the white-rot fungus Phanerochaete chrysosporium catalyses oxidative decolourisation and depolymerisation of macromolecules from brown coal in vivo. In this study we show that LiP catalyses these transformations in vitro. Unmethylated (USC45 coal) and methylated (MWSC6 coal) fractions of solubilised macromolecules (M r > 30 000) from a brown coal were treated with a semi-purified preparation of LiP isozymes from P. chrysosporium. Both coal fractions were decolourised, losing between 26% and 39% of their absorbance at both 280 nm and 400 nm, in reactions that had an absolute requirement for H2O2 and veratryl alcohol. Neither coal fraction was transformed when the enzyme was heat-inactivated or in the presence of the LiP inhibitor metavanadate. Gel-permeation chromatography showed that MWSC6 coal but not USC45 was depolymerised and yielded low-molecular-mass (M r < 30 000) fragments. Nine monomeric products were identified by GC-MS. Received: 20 March 1998 / Received revision: 3 September 1998 / Accepted: 3 September 1998  相似文献   

4.
The production of ligninolytic enzymes was studied in surface cultures of the South American white-rot fungus Nematoloma frowardii b19 and four other strains of this ecophysiological group (Clitocybula dusenii b11, Auricularia sp. m37a, wood isolates u39 and u45), which are able to depolymerize low-rank-coal-derived humic acids with the formation of fulvic-acid-like compounds. The fungi produced the three crucial enzymes of lignin degradation – lignin peroxidase, manganese peroxidase and laccase. In the case of N. frowardii b19, laccase and the two peroxidases could be stimulated by veratryl alcohol. Manganese (II) ions (Mn2+) caused a rapid increase of Mn peroxidase activity accompanied by the complete repression of lignin peroxidase. Under nitrogen-limited conditions the growth as well as the production of ligninolytic enzymes was partly repressed. During the depolymerization process of coal humic acids using solid agar media, gradients of ligninolytic enzyme activities toward 2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonate) and syringaldazine were detectable inside the agar medium. Received: 5 August 1996 / Received revision: 13 November 1996 / Accepted: 15 November 1996  相似文献   

5.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

6.
Summary Six fast growing ligninolytic white-rot fungi were compared with Phanerochaete chrysosporium. The results showed that the fungi have similar ligninolytic systems, although minor differences exist. Like in P. chrysosporium the ligninolytic system could be induced by veratryl alcohol in Coriolus versicolor and Chrysosporium pruinosum. These three lignin peroxidase producing fungi were the fastest lignin degraders in stationary cultures, whereas in agitated cultures Bjerkandera adusta showed highest lignin degradation rates. Metabolites accumulating during the degradation of veratryl alcohol were analyzed and compared. Peroxidase production seems to be a common feature of all the tested fungi. Polyclonal antibodies against the lignin peroxidase with pl of 4.65 from P. chrysosporium reacted with the extracellular peroxidases of C. pruinosum, C. versicolor and B. adusta, but not with those of Pleurotus ostreatus.Dedicated to Professor Dr. Hans-Jürgen Rehm on the occasion of his 60th birthday  相似文献   

7.
Biodegradation of 2,4,6-trinitrotoluene (TNT) by the wood-rotting BasidiomycetePhanerochaete chrysosporium was studied in a fixed-film silicone membrane bioreactor and in agitated pellected cultures. The initial intermediate products of TNT biodegradation were shown to be 2-amino-4,6-dinitrotoluene (2amDNT) and 4-amino-2,6-dinitrotoluene (4amDNT). These intermediates were also degraded byP. chrysosporium. However, their rates of degradation were slow and appeared to represent rate-limiting steps in TNT degradation. The fact that 2amDNT and 4amDNT were further degraded is of importance. In most other microbial systems these compounds are typically not further degraded or are dimerized to even more persistent azo and azoxydimers. Similar to previous studies performed in stationary cultures, it was shown that substantial amounts of [14C]-TNT were degrade to [14C]-carbon dioxide in agitated pelleted cultures. Lignin peroxidase activity (assayed by veratryl alcohol oxidation) virtually disappeared upon addition of TNT to ligninolytic cultures ofP. chrysosporium. However, TNT, 2amDNT, and 4amDNT did not inhibit lignin peroxidase activity, nor were they substrates for this enzyme. Subsequent studies revealed that 4-hydroxylamino-2,6-dinitrotoluene, an intermediate in TNT reduction, was a potent lignin peroxidase inhibitor. Further studies revealed that this compound was also a substrate for lignin peroxidase H8.  相似文献   

8.
A manganese peroxidase preparation from the white-rot fungus Nematoloma frowardii was found to be capable of releasing up to 17% 14CO2 from 14C-labelled synthetic humic substances. The latter were prepared from [U-14C]catechol by spontaneous oxidative polymerization or laccase-catalysed polymerization. The ex-tent of humic substance mineralization was considerably enhanced in the presence of the thiol mediator glutathione (up to 50%). Besides the evolution of 14CO2, the treatment of humic substances with Mn peroxidase resulted in the formation of lower-molecular-mass products. Analysis of residual radioactivity by gel-permeation chromatography demonstrated that the predominant molecular masses of the initial humic substances ranged between 2 kDa and 6 kDa; after treatment with Mn peroxidase, they were reduced to 0.5–2 kDa. The extracellular depolymerization and mineralization of humic substances by the Mn peroxidase system may play an important role in humus turnover of habitats that are rich in basidiomycetous fungi. Received: 25 September 1997 / Received revision: 12 January 1998 / Accepted: 13 January 1998  相似文献   

9.
Production of ligninolytic enzymes and degradation of 14C-ring labeled synthetic lignin by the white-rot fungus Cyathus stercoreus ATCC 36910 were determined under a variety of conditions. The highest mineralization rate for 14C dehydrogenative polymerizates (DHP; 38% 14CO2 after 30 days) occurred with 1 mM ammonium tartrate as nitrogen source and 1% glucose as additional carbon source, but levels of extracellular laccase and manganese peroxidase (MnP) were low. In contrast, 10 mM ammonium tartrate with 1% glucose gave low mineralization rates (10% 14CO2 after 30 days) but higher levels of laccase and manganese peroxidase. Lignin peroxidase was not produced by C. stercoreus under any of the studied conditions. Mn(II) at 11 ppm gave a higher rate of 14C DHP mineralization than 0.3 or 40 ppm, but the highest manganese peroxidase level was obtained with Mn(II) at 40 ppm. Cultivation in aerated static flasks gave rise to higher levels of both laccase and manganese peroxidase compared to the levels in shake cultures. 3,4-Dimethoxycinnamic acid at 500 μM concentration was the most effective inducer of laccase of those tested. The purified laccase was a monomeric glycoprotein having an apparent molecular mass of 70 kDa, as determined by calibrated gel filtration chromatography. The pH optimum and isoelectric point of the purified laccase were 4.8 and 3.5, respectively. The N-terminal amino acid sequence of C. stercoreus laccase showed close homology to the N-terminal sequences determined from other basidiomycete laccases. Information on C. stercoreus, whose habitat and physiological requirements for lignin degradation differ from many other white-rot fungi, expands the possibilities for industrial application of biological systems for lignin degradation and removal in biopulping and biobleaching processes. Received: 29 January 1999 / Received revision: 5 July 1999 / Accepted: 9 July 1999  相似文献   

10.
Eighteen fungal strains, known for their ability to degrade lignocellulosic material or lignin derivatives, were screened for their potential to decolorize commercially used reactive textile dyes. Three azo dyes, Reactive Orange 96, Reactive Violet 5 and Reactive Black 5, and two phthalocyanine dyes, Reactive Blue 15 and Reactive Blue 38, were chosen as representatives of commercially used reactive dyes. From the 18 tested fungal strains only Bjerkandera adusta, Trametes versicolor and Phanerochaete chrysosporium were able to decolorize all the dyes tested. During degradation of the nickel-phthalocyanine complex, Reactive Blue 38, by B. adusta and T. versicolor respectively, the toxicity of this dye to Vibrio fischeri was significantly reduced. In the case of Reactive Violet 5, a far-reaching detoxification was achieved by treatment with B. adusta. Reactive Blue 38 and Reactive Violet 5 were decolorized by crude exoenzyme preparations from T. versicolor and B. adusta in a H2O2-dependent reaction. Specific activities of the exoenzyme preparations with the dyes were determined and compared to oxidation rates by commercial horseradish peroxidase. Received: 3 February 1997 / Received revision: 9 April 1997 / Accepted: 13 April 1997  相似文献   

11.
Homoveratric acid (HVA) degradation was observed in cultures of Pleurotus eryngii lacking lignin peroxidase (LiP) activity. Extracellular enzymes seemed responsible for this transformation, and the lack of activity after ultrafiltration of the culture liquid suggests that the presence of some low-molecular-size compounds is required. This hypothesis is supported by rapid HVA transformation after addition of the synthetic laccase substrate 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) to the ultrafiltered liquid. HVA transformation by the extracellular enzymes from P. eryngii takes place via C-C breakdown and formation of veratryl alcohol, which is further transformed into veratraldehyde. The same major compounds were found during HVA transformation by LiP from Phanerochaete chrysosporium, but this reaction was not stimulated by ABTS. Although the involvement of other enzymes cannot be ruled out, purified laccase from Pleurotus eryngii caused the same HVA transformation pattern in presence of ABTS. Moreover, veratryl alcohol oxidation by P. eryngii laccase was demonstrated in the presence of ABTS. These results suggest that enzymatic systems lacking LiP could be responsible for natural degradation of lignin.  相似文献   

12.
The lignin peroxidase enzyme system of the white-rot fungus, Phanerochaete chrysosporium was assayed for its capacity to degrade two recalcitrant aliphatic ether compounds, high-molecular-mass polyethylene glycol (PEG 20 000) and methyl tert-butyl ether. Ligninolytic cultures of Phanerochaete chrysosporium were spiked with each ether compound and incubated in reaction vessels. Separate incubations were conducted in which the ether compounds were present as sole carbon source. Other parameters, such as varying the methyl tert-butyl ether concentration and veratryl alcohol additions were tested. No significant degradation of either compound was observed under any of the conditions tested. Implications of these results are discussed with respect to the oxidative limitations of the lignin peroxidase enzyme system and structural features of substrate molecules that may be requisite for oxidation by this system.  相似文献   

13.
We report the synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor. The effects of operating parameters such as enzyme level, pH, and electrical potential on the efficiency of veratryl alcohol oxidation were investigated. Furthermore, we compared direct addition of hydrogen peroxide with electrogeneration of the material during enzymatic oxidation of veratryl alcohol. The electroenzymatic method using in situ-generated hydrogen peroxide was found to be effective for oxidation of veratryl alcohol by lignin peroxidase. The new method may be easily applied to biodegradation systems.  相似文献   

14.
Summary Methanol formation during the degradation of synthetic lignin (DHP), spruce and birch milled wood lignin (MWL) by Phanerochaete chrysosporium Burds. was studied under different culture conditions. When 100-ml flasks with 15–20 ml volumes of culture media containing high glucose and low nitrogen concentrations were used the metabolism of methanol to formaldehyde, formic acid and CO2 was repressed thereby facilitating methanol determination. In standing cultures with oxygen flushing the fungus converted up to 25% of the DHP-methoxyl groups to methanol and 0.5–1.5% to 14CO2 within 22–24 h. Methanol formation from methoxyl-labelled DHP was strongly repressed by high nitrogen in the medium, by addition of glutamic acid and by culture agitation. These results indicate that methanol is formed only under ligninolytic conditions and during secondary metabolism. Methanol is most likely released both from the lignin polymer itself and from lignin degradation products. Methanol was also formed from MWL preparations with higher percentage yields produced from birch as compared to spruce MWL.Small amounts of methanol detected in cultures without lignin probably emanated from demethoxylation of veratryl alcohol synthesized de novo from glucose by the fungus during secondary metabolism. Catalase or superoxide dismutase added to the fungal culture prior to addition of lignin, did not decrease methanol formation. Horseradish peroxidase plus H2O2 in vitro caused 5–7% demethoxylation of O14CH3-DHP in 22 h, while laccase gave smaller amounts of methanol (1.8%). Since addition of H2O2 gave similar results as peroxidase plus H2O2, it seems likely that the main effect of peroxidase demethoxylation emanates from the hydrogen peroxide.  相似文献   

15.
Summary The lignin mineralization rate in cultures of Phanerochaete chrysosporium increases with lignin peroxidase concentration up to 20 nkat ml–1. At higher concentrations the rate of lignin mineralization decreases with increasing lignin peroxidase concentration. The amount of mycelium is not a limiting factor for lignin mineralization at high exocellular lignin peroxidase in association with the mycelium as pellets and no free exocellular enzyme induce a lignin mineralization rate equivalent to cultures reconstituted with washed pellets supplemented with 15 nkat ml–1 of exogenous free enzyme. These results show that although lignin degradation by lignin peroxidase seems to be facilitated when lignin peroxidase is localised on the surface of the mycelium, free exocellular lignin peroxidase can also efficiently enhance mineralization of lignin by P. chrysosporium.  相似文献   

16.
The in vitro depolymerization of humic acids derived from German lignite (low-rank coal, brown coal) was studied using a manganese peroxidase preparation from the white-rot fungus Nematoloma frowardii b19. The H2O2 required was continuously generated by glucose oxidase. Mn peroxidase depolymerized high-molecular-mass humic acids by forming fulvic-acid-like compounds. The depolymerization process was accompanied by the decolorization of the dark-brown humic acid fraction soluble in alkaline solutions (decrease in absorbance at 450 nm) and by the yellowish coloring of the fraction of acid-soluble fulvic-acid-like compounds (increase in absorbance at 360 nm). The Mn peroxidase of N. frowardii b19 has been proved to be highly stable; even after an in vitro reaction time of 7 days in the presence of humic acids, less than 10% loss in total oxidizing activity was detectable. Received: 16 September 1996 / Received revision: 16 December 1996 / Accepted: 20 December 1996  相似文献   

17.
The effects of adding some inducers of lignolytic activity to semi-solid-state cultures of Phanerochaete chrysosporium BKM-F-1767 (ATCC 24725) were investigated. The inducers assayed were veratryl alcohol and solid manganese (IV) oxide. The microorganism was cultured on corncob, which functioned both as physical support and source of nutrients. Supplementing the cultures with veratryl alcohol created the situation where manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of approximately 1,500 U/l and 200 U/l, respectively, could be attained. These activities were considerably higher than those obtained in the reference cultures (about 5 and 4-fold). In the same way, the addition of manganese (IV) oxide led to MnP and LiP activity levels of about 2,000 U/l and 300 U/l, respectively. These activities were also notably above (about 6 and 5-fold, respectively) those achieved in the reference cultures. Moreover, laccase activity (around 200 U/l) was only detected in veratryl alcohol or manganese (IV) oxide supplemented cultures.  相似文献   

18.
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase. The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon H to be excellent MnP inducers. Electronic Publication  相似文献   

19.
Manganese and lignin peroxidase (MnP, LiP) activities were measured in straw extracts from cultures of Phanerochaete chrysosporium. Out of six MnP substrates, the MBTH/DMAB (3-methyl-2-benzothiazolinone hydrazone/3-(dimethylamino)benzoic acid), gave the highest MnP activity. Detection of LiP activity as veratryl alcohol oxidation was inhibited by phenols in the straw culture extracts. Appropriate levels of veratryl alcohol and peroxide (4 mM and 0.4 mM, respectively), and a restricted sample volume (not larger than 10%) were necessary to detect activity.  相似文献   

20.
In this paper, the in vivo decolourization of the polymeric dye Poly R‐478 by semi‐solid‐state cultures of Phanerochaete chrysosporium BKM‐F‐1767 (ATCC 24725) was investigated, employing corncob as a support. In order to stimulate the ligninolytic system of the fungus, the cultures were supplemented with veratryl alcohol (2 mM) or manganese (IV) oxide (1 g/l). Maximum manganese‐dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of around 2,000 U/l and 400 U/l were attained by the former, whereas the activities reached by the latter were of about 1,500 U/l and 200 U/l, respectively. Furthermore, laccase activity (around 150 U/l) was only detected in manganese (IV) oxide supplemented cultures. The polymeric dye Poly R‐478 (0.02 w/v) was added to three‐day‐old cultures. A percentage of biological decolourization of about 85% was achieved using cultures supplemented with veratryl alcohol, whereas MnO2 cultures showed a rather lower percentage of around 58% after nine days of dye incubation. Moreover, a correlation between MnP activity and Poly R‐478 decolourization could be observed, indicating that this enzyme is mainly responsible for dye degradation. In the present work, the in vivo decolourizing capability of the ligninolytic complex secreted by P. chrysosporium was investigated under the above‐mentioned cultivation conditions, employing a model compound, such as the polymeric dye Poly R‐478.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号