首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5) ofpolyamidoamine (PAMAM) dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA) and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III). Dendrimer-DOTA conjugates were then complexed with GdCl3 followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s(-1) mM(-1)) of water. In xenograft tumors established in immunodeficient (SCID) mice with KB human epithelial cancer cells expressing folate receptor (FAR), the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III)-DOTA-G5-FA compared with signal generated by non-targeted Gd(III)-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer nanoparticles for targeted cancer imaging with the prolonged clearance time compared with the current clinically approved gadodiamide (Omniscan) contrast agent. Potential application of this approach may include determination of the folate receptor status of tumors and monitoring of drug therapy.  相似文献   

2.
We hypothesized that chelating Gd(III) to 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) on peptide nucleic acid (PNA) hybridization probes would provide a magnetic resonance genetic imaging agent capable of hybridization to a specific mRNA. Because of the low sensitivity of Gd(III) as an magnetic resonance imaging (MRI) contrast agent, a single Gd-DO3A complex per PNA hybridization agent could not provide enough contrast for detection of cancer gene mRNAs, even at thousands of mRNA copies per cell. To increase the Gd(III) shift intensity of MRI genetic imaging agents, we extended a novel DO3An-polydiamidopropanoyl (PDAPm) dendrimer, up to n = 16, from the N-terminus of KRAS PNA hybridization agents by solid phase synthesis. A C-terminal D(Cys-Ser-Lys-Cys) cyclized peptide analog of insulin-like growth factor 1 (IGF1) was included to enable receptor-mediated cellular uptake. Molecular dynamic simulation of the (Gd-DO3A-AEEA)16-PDAP4-AEEA2-KRAS PNA-AEEA-D(Cys-Ser-Lys-Cys) genetic imaging nanoparticles in explicit water yielded a pair correlation function similar to that of PAMAM dendrimers, and a predicted structure in which the PDAP dendron did not sequester the PNA. Thermal melting measurements indicated that the size of the PDAP dendron included in the (DO3A-AEEA)n-PDAPm-AEEA2-KRAS PNA-AEEA-D(Cys-Ser-Lys-Cys) probes (up to 16 Gd(III) cations per PNA) did not depress the melting temperatures (Tm) of the complementary PNA/RNA hybrid duplexes. The Gd(III) dendrimer PNA genetic imaging agents in phantom solutions displayed significantly greater T1 relaxivity per probe (r1 = 30.64 +/- 2.68 mM(-1) s(-1) for n = 2, r1 = 153.84 +/- 11.28 mM(-1) s(-1) for n = 8) than Gd-DTPA (r1 = 10.35 +/- 0.37 mM(-1) s(-1)), but less than that of (Gd-DO3A)32-PAMAM dendrimer (r1 = 771.84 +/- 20.48 mM(-1) s(-1)) (P < 0.05). Higher generations of PDAP dendrimers with 32 or more Gd-DO3A residues attached to PNA-D(Cys-Ser-Lys-Cys) genetic imaging agents might provide greater contrast for more sensitive detection.  相似文献   

3.
Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium ((157,155)Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)(254) (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with (153)Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)(256) (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p < 0.001) and G6Gd (30% ID/g, p < 0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1 day after i.p. injection. In conclusion, a sufficient amount (162 ppm) of Av-G6Gd was accumulated and internalized into the SHIN3 cells both in vitro and in vivo to kill the cell using (157/155)Gd with external irradiation with an appropriate neutron beam while monitoring with MRI. Thus, Av-G6Gd may be a promising agent for Gd neutron capture therapy of peritoneal carcinomatosis. This reagent also has the potential to permit monitoring of its pharmacokinetic progress with MRI.  相似文献   

4.
Important properties for a biosensor are the sensitive detection of target DNA at low concentration, the specific and accurate distinction of the target and other DNA having a similar sequence, and measurement capability over a wide range of target concentrations. To these ends, generation 3 polyamidoamine (PAMAM) dendrimer was used to improve DNA chip properties. PAMAM dendrimer surface amine moieties were modified to biotin and immobilized on glass slides using biotin-avidin conjugation. The surface morphologies of the avidin-biotin-dendrimer complexes were observed using atomic force microscopy and scanning electron microscopy. Detection sensitivity for fluorescence-labeled target DNA increased approximately 4-fold by the dendrimer coating. Dendrimer coating also markedly improved the dynamic range and detection of single nucleotide polymorphisms. Dendrimer complex morphology had little effect on the sensitivity.  相似文献   

5.
Colchicine, a known tubulin binding agent and vascular disrupting agent, causes rapid vascular shut down and central necrosis in tumors. The binding of tubulin results in tubulin destabilization, with characteristic cell shape changes and inhibition of cell division, and results in cell death. A gadolinium(III) labeled derivative of colchicine (Gd·DOTA·Colchicinic acid) was synthesized and characterized as a theranostic agent (enabling simultaneous diagnostic/real time MRI contrast imaging). In vitro, Gd·DOTA·Colchicinic acid was shown to initiate cell changes characteristic of tubulin-destabilization in both OVCAR-3 and IGROV-1 ovarian carcinoma cell lines in vitro over a period of 24 h, while maintaining the qualities of the MR imaging tracer. In vivo, Gd·DOTA·Colchicinic acid (200 mg/kg) was shown to induce the formation of central necrosis, which was confirmed ex vivo by histology, in OVCAR-3 subcutaneous tumor xenografts, while simultaneously acting as an imaging agent to promote a significant reduction in the MR relaxation time T(1) (p < 0.05) of tumors 24 h post-administration. Morphological changes within the tumor which corresponded with areas derived from the formation of central necrosis were also present on MR images that were not observed for the same colchicine derivate that was not complexed with gadolinium that also presented with central necrosis ex vivo. However, Gd·DOTA·Colchicinic acid accumulation in the liver, as shown by changes in liver T(1) (p < 0.05), takes place within 2 h. The implication is that Gd·DOTA·Colchicinic acid distributes to tissues, including tumors, within 2 h, but enters tumor cells to lower T(1) times and promotes cell death over a period of up to 24 h. As the biodistribution/pharmacokinetic and pharmacodynamics data provided here is similar to that of conventional colchicines derivatives, such combined data are a potentially powerful way to rapidly characterize the complete behavior of drug candidates in vivo.  相似文献   

6.
Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)(4) specific to clotted plasma proteins in tumor stroma for cancer MR molecular imaging. CLT1-dL-(Gd-DOTA)(4) was synthesized by conjugating four Gd-DOTA monoamide chelates to a CLT1 peptide via generation 1 lysine dendrimer. The T(1) relaxivity of CLT1-dL-(Gd-DOTA)(4) was 40.4 mM(-1) s(-1) per molecule (10.1 mM(-1) s(-1) per Gd) at 37 °C and 1.5 T. Fluorescence imaging showed high binding specificity of CLT1 to orthotopic PC3 prostate tumor in mice. The contrast agent resulted in improved tumor contrast enhancement in male athymic nude mice bearing orthotopic PC3 prostate tumor xenograft at a dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for high-resolution MR molecular imaging of prostate tumor.  相似文献   

7.
Magnetic resonance imaging (MRI) is a technique used in both clinical and experimental settings to produce high-resolution images of opaque organisms without ionizing radiation. Currently, MR imaging is augmented by contrast agents, and the vast majority these small molecule Gd(III) chelates are confined to the extracellular regions. As a result, contrast agents are confined to vascular regions reducing their ability to provide information about cell physiology or molecular pathology. We have shown that polypeptides of arginine have the capacity to transport Gd(III) contrast agents across cell membranes. However, this transport is not unidirectional, and once inside the cell, the arginine-modified contrast agents efflux rapidly, decreasing the intracellular Gd(III) concentration and corresponding MR image intensity. By exploiting the inherent disulfide reducing environment of cells, thiol compounds, Gd(III)-DOTA-SS-Arg 8 and Gd(III)-DTPA-SS-Arg 8, are cleaved from their cell-penetrating peptide transduction domains upon cell internalization. This reaction prolongs the cell-associated lifetime of the chelated Gd(III) by cleaving it from the cell transduction domain.  相似文献   

8.
The clinical application of macromolecular Gd(III) complexes as MRI contrast agents is impeded by their slow excretion and potential toxicity due to the release of Gd(III) ions caused by the metabolism of the agents. A polymer Gd(III) chelate conjugate with a cleavable spacer has been designed to solve this problem. Poly(l-glutamic acid)-cystamine-[Gd(III)-DOTA] was prepared by the conjugation of DOTA to PGA (MW = 50,000) via cystamine, a cleavable disulfide spacer, followed by the complexation with GdCl(3). A Gd(III) DOTA chelate derivative was readily released from the polymer conjugate in the incubation with cysteine, an endogenous plasma thiol. The conjugate produced significant MRI blood pool contrast enhancement in nude mice bearing OVCAR-3 human ovarian carcinoma xenographs. Less significant contrast enhancement was observed for a small molecular contrast agent, Gd(DTPA-BMA). The pharmacokinetic MRI study showed that the Gd(III) chelate from the conjugate accumulated in the urinary bladder in a similar kinetic pattern to Gd(DTPA-BMA), suggesting that the chelate was released by the endogenous thiols and excreted through renal filtration. The preliminary results suggest that this novel design has a great potential to solve the safety problem of macromolecular MRI contrast agents.  相似文献   

9.
Colchicine is a known tubulin binding agent enabling necrosis in tumors. A novel tubulin-directed DO3A-colchicine conjugate and its Gd(III) complex were prepared from N-deacetylcolchicine, coupling alkaloid and polyaza-alicyclic functions via a peptide coupling methodology. The longitudinal proton relaxivity of the Gd(III) complex in water at 4.7 T is 2.86 mM−1 s−1 and a similar efficacy as colchicine towards ovarian carcinoma cells in vitro.  相似文献   

10.
Macromolecular gadolinium (Gd)(III) complexes have a prolonged blood circulation time and can preferentially accumulate in solid tumors, depending on the tumor blood vessel hyperpermeability, resulting in superior contrast enhancement in magnetic resonance (MR) cardiovascular imaging and cancer imaging as shown in animal models. Unfortunately, safety concerns related to these agents' slow elimination from the body impede their clinical development. Polydisulfide Gd(III) complexes have been designed and developed as biodegradable macromolecular magnetic resonance imaging (MRI) contrast agents to facilitate the clearance of Gd(III) complexes from the body after MRI examinations. These novel agents can act as macromolecular contrast agents for in vivo imaging and excrete rapidly as low-molecular-weight agents. The rationale and recent development of the novel biodegradable contrast agents are reviewed here. Polydisulfide Gd(III) complexes have relatively long blood circulation time and gradually degrade into small Gd(III) complexes, which are rapidly excreted via renal filtration. These agents result in effective and prolonged in vivo contrast enhancement in the blood pool and tumor tissue in animal models, yet demonstrate minimal Gd(III) tissue retention as the clinically used low-molecular-weight agents. Structural modification of the agents can readily alter the contrast-enhancement kinetics. Polydisulfide Gd(III) complexes are promising for further clinical development as safe, effective, biodegradable macromolecular MRI contrast agents for cardiovascular and cancer imaging, and for evaluation of therapeutic response.  相似文献   

11.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   

12.
A smart contrast agent for magnetic resonance imaging (MRI) can be used to exploit an enzymatic activity specific to the tissue or disease state signified by converting an MRI-inactivated agent to an activated MRI agent. In this study, a beta-galactopyranose-containing gadolinium(III) complex [Gd(DOTA-FPG)(H 2O)] was designed, synthesized, and characterized as being potentially suitable for a bioactivated MRI contrast agent. The (17)O NMR experiments were conducted to estimate the water exchange rate k e x 298 and rotational correlation time tau R 298 . The k ex 298 value of [Gd(DOTA-FPG)(H 2O)] is similar to that of [Gd(DO3A-bz-NO 2)(H 2O)]. The rotational correlation time value of [Gd(DOTA-FPG)(H 2O)] is dramatically longer than that of [Gd(DOTA)(H 2O)] (-) Relaxometric studies show that the percentage change in the T 1 value of [Gd(DOTA-FPG)(H 2O)] decreases dramatically in the presence of beta-galactosidase and human serum albumin. The T(1) change percentage of [Gd(DOTA-FPG)(H 2O)] (60%) is significantly higher than those of Egad and gadolinium(III)-1-(4-(2-(1-(4,7,10-triscarboxymethyl-(1,4,7,10-tetraazacyclododecyl)))-ethylcarbamoyloxymethyl)-2-nitrophenyl)-beta- d-glucopyronuronate. The signal intensity of the MR image for [Gd(DOTA-FPG)(H 2O)] in the presence of human serum albumin and beta-galactosidase (2670 +/- 210) is significantly higher than that of [Gd(DOTA-FPG)(H 2O)] in the sodium phosphate buffer solution (1490 +/- 160). In addition, the MR images show a higher-intensity enhancement in CT26/beta-gal tumor with beta-galactosidase gene expression but not for the CT26 tumor without beta-galactosidase gene expression. We conclude that [Gd(DOTA-FPG)(H 2O)] is a suitable candidate for a bioactivated MRI contrast agent in tracing gene expression.  相似文献   

13.
BackgroundA promising strategy for cancer diagnosis and therapy is the development of an agent for multimodal imaging and treatment. In the present paper we report on two novel multifunctional agents prepared on the porphyrazine pigment platform using a gadolinium (III) cation chelated by red-fluorescent tetrapyrrole macrocycles (GdPz1 and GdPz2).MethodsSpectral and magnetic properties of the compounds were analyzed. Monitoring of GdPz1 and GdPz2 accumulation in the murine colon carcinoma CT26 was performed in vivo using fluorescence imaging and MRI. The photobleaching of GdPz1 or GdPz2 and tumor growth rate after photodynamic therapy (PDT) were assessed.ResultsGdPz1 and GdPz2 demonstrated the selective accumulation in tumor that was indicated by higher fluorescence intensity in the tumor area in comparison with the normal tissues. The results of MRI in vivo showed that GdPz1 or GdPz2 provided significant contrast enhancement of the tumor in T1 MR images. PDT with GdPz2 resulted in ~ 20% decrease in fluorescence intensity of the compound and the inhibition of tumor growth.ConclusionsWe assessed the efficiency of two innovative Gd(III) cation-porphyrazine chelates as bimodal MR and fluorescent probes and photosensitizers for PDT and showed their potentials for tumor diagnostics and treatment.General significanceWater-soluble structures simple in preparation and administration into the body represent special interest for theranostics of tumors. Novel porphyrazine macrocycles chelating a central gadolinium cation demonstrated a good prospect as effective multimodal agents, representing a new approach to MRI and fluorescence imaging guided PDT.  相似文献   

14.
Gd(III) complexes are used as magnetic resonance imaging (MRI) contrast agents because they greatly enhance the relaxation rate of water protons of tissues in which they distribute, an effect that is much more marked if the paramagnetic complex is part of a macromolecular system. Furthermore applications in molecular imaging, require that as many units of contrast agent as possible be directed to the site of interest. To this end we synthesised a polymer made of chitosan functionalized with beta- and gamma-cyclodextrins (CDs) that is able to form high-affinity adducts with suitably functionalized Gd(III) complexes. beta- and gamma-CDs were first treated with maleic anhydride to afford 6-monosubstituted derivatives that reacted regioselectively with the amino groups of chitosan. Reaction times and yields were markedly improved by carrying out these reactions under high-intensity ultrasound or microwave irradiation. Compared to the CD monomers, beta- and gamma-CD-chitosan adducts show large increases both in terms of their binding affinity towards Gd(III) complexes and in relaxivity values and they appear promising carriers for the in vivo vehiculation of Gd(III) complexes.  相似文献   

15.
The novel Gd(III) complexes of heptadentate ligands NE3TA and NE3TA-Bn were prepared, and their relaxivities were measured and favorably compared to the commercially available MRI contrast enhancement agent Gd(DOTA). NE3TA was conjugated with cholic acid (CA) to produce CA-NE3TA. TEM images of Gd(CA-NE3TA) indicate that the complex self-assembles forming nano-sized micelles and displays an over threefold increased relaxivity compared to Gd(DOTA). The new cholic acid-conjugated nanoparticle MR contrast enhancement agent, Gd(CA-NE3TA) possesses great promise for use in targeted MRI.  相似文献   

16.
The hydrogels assembled from a pair of self-repulsive but mutually attractive decapeptides are visualized by magnetic resonance imaging (MRI). It is found that in the absence of Gd(III)-chelate, gelation has little effect on MRI signal intensity. In the presence of Gd(III)-chelate, gelation leads to significant changes in water relaxation and MR signal intensity. The sol to gel transition is best visualized by T2-weighted imaging using large echo time with the sol producing a bright spot and the gel producing a dark spot. MRI studies point to high local Gd(III)-chelate concentration. Small-angle X-ray scattering study indicates that this local enrichment of Gd(III)-chelate has two contributing processes: first, the aggregation of peptides into fibers; second, within peptide fibers, Gd(III)-chelate further aggregate into clusters. This work demonstrates that the status of peptide-based hydrogels can be visualized by MRI with the aid of covalently linked Gd(III)-chelates. This result has implications for monitoring peptide scaffolds in vivo.  相似文献   

17.
Avidin was modified with poly(ethylene glycol) in the presence of a biotin binding site protective agent synthesised by imminobiotin conjugation to branched 20 kDa PEG. Avidin was incubated with imminobiotin–PEG and reacted with high amounts of 5, 10 or 20 kDa PEG to modify the protein amino groups. Circular dichroism demonstrated that the extensive PEGylation does not alter the protein conformational structure. The affinity of avidin–PEG conjugates for biotin and biotinylated antibodies depended on the PEG size or the use of a protective agent. Avidin–PEG 10 and 20 kDa prepared in the presence of imminobiotin–PEG maintained 100% of the native affinity for biotin. The 5 kDa PEG derivative and the ones obtained without biotin site protection maintained 79–85% of the native affinity. The affinity for biotinylated antibodies decreased to 35% when the conjugation was performed without imminobiotin–PEG, while the conjugates obtained with high-molecular-weight PEGs in the presence of protective agent displayed high residual affinity. All conjugates possessed negligible antigenicity and immunogenicity. PEGylation greatly prolonged the avidin permanence in the circulation, reduced its disposition in the liver and kidneys and promoted accumulation into solid tumors. PEGylation was found to prevent the protein cell uptake, either by phagocytosis or pinocytosis.  相似文献   

18.
The high binding affinity between avidin and biotin has been exploited to develop a procedure for magnetic resonance imaging (MRI) visualization of target cells. SHIN3 and PANC1 tumor cell lines have been used as target cells because they possess on their membranes galactosyl receptors able to bind avidin molecules. Avidin–Gd chelate adducts have been built by using two Gd complexes containing one (Gd-I) and two (Gd-II) biotin residues, respectively. The relaxivities of such supramolecular adducts are significantly higher than those shown by free Gd-I and Gd-II. There is evidence of the occurrence of multilayered adducts in which the bis-biotinylated Gd3+ complex acts as a bridge between adjacent avidin molecules. MRI differentiation of labeled versus unlabeled cells has been attained when approximately 6×108 Gd units were internalized in each cell. Furthermore, there is a marked decrease in the measured intracellular T1 relaxivity as the number of internalized Gd complexes increases, probably owing to too short relaxation times of endosomic water protons with respect to their diffusion lifetime.  相似文献   

19.

Objectives

To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung.

Methods

A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI.

Results

We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm2) with a similar morphology to early bronchoalveolar cell carcinomas.

Conclusion

As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.  相似文献   

20.
The purpose of this study was to design and prepare macromolecular contrast agents (CAs) with a precisely defined globular structure for MR angiography and tumor angiogenesis imaging. Generations 1 through 3 (Gd-DOTA-monoamide)-poly-L-lysine octasilsesquioxane dendrimers were prepared as nanoglobular MRI CAs. The nanoglobular Gd(III) chelates had a well-defined compact globular structure and high loading of Gd-DOTA-monoamide at their surface. The size of the G1, G2, and G3 nanoglobular MRI CAs was approximately 2.0, 2.4, and 3.2 nm, respectively. The T1 relaxivity of G1, G2, and G3 nanoglobular MRI CAs was approximately 6.4, 7.2, and 10.0 mM(-1) sec(-1) at 3T, respectively. The nanoglobular MRI CAs showed size-dependent contrast enhancement within the mouse vasculature, which gradually decayed to baseline after a 60 min session. The G3 nanoglobular CA resulted in more significant and prolonged vascular enhancement than the smaller nanoglobular agents at 0.03 mmol Gd/kg. The G3 agent also provided significant and prolonged contrast enhancement in the heart and vasculature at a dose as low as 0.01 mmol Gd/kg, 1/10th of the regular clinical dose. Significant enhancement was observed in tumor for all CAs. The nanoglobular CAs cleared via renal filtration and accumulated in the urinary bladder as shown in the dynamic MR images. The nanoglobular Gd(III) chelates are effective intravascular MRI CAs at substantially reduced doses. The nanoglobular MRI CAs are promising for further preclinical development for MR angiography and MR imaging of tumor angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号