首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The specific binding of vasoactive intestinal peptide (VIP) to its specific receptors as well as the stimulatory effect of the neuropeptide on cyclic AMP accumulation were studied in jejuno-ileal epithelial cells from 14-, 20- and 60-day-old rats. The potency and specificity of the VIP receptor-effector system did not vary during development. However, the concentration of VIP receptors and the efficiency of VIP stimulation of cyclic AMP generation increased from suckling to adult conditions, and VIP levels in jejuno-ileal tissue followed a parallel course.  相似文献   

2.
The number of vasoactive intestinal peptide (VIP) receptors and the efficiency of VIP in the stimulation of cyclic AMP accumulation in rat jejunal epithelial cells increased after bilateral adrenalectomy. However, this condition increased neither receptor affinity nor VIP potency. In addition, jejunal VIP levels followed a parallel increase. These changes reversed to control conditions after glucocorticoid replacement with dexamethasone indicating that adrenalectomy modifies the intestinal VIP receptor/effector system and suggest a relationship between corticosteroids and VIP in the functions of intestinal epithelium.  相似文献   

3.
The concentration of VIP in duodenum and jejunum as well as the interaction of VIP (binding and stimulation of cyclic AMP accumulation) with epithelial cells from both gut segments were studied in rats after surgical bypass of the pylorus by gastroduodenostomy. Duodenal VIP concentration increased in rats with gastroduodenostomy as compared to sham-operated animals. The binding capacity (but not the affinity) of VIP binding sites and the efficiency (but not the potency) of VIP on cyclic AMP accumulation decreased in the condition of gastroduodenostomy. However, no modifications in either VIP concentration and interaction could be seen at the jejunal level.  相似文献   

4.
Specific binding of vasoactive intestinal peptide (VIP) and VIP-stimulated c y c l i c AMP accumulation were studied in small intestinal epithelial cells (both of crypt and villous levels) 3, 7 and 14 d after a 60% resection of the small intestine . The affinity, but not the binding capacity, of VIP receptors decreased during the adaptive hyperplastic response. Basal cyclic AMP levels were similar in cells of both control and resected rats. Resection induced a decrease of potency, but not of efficiency, of VIP on the stimulation of cyclic AMP accumulation.  相似文献   

5.
Treatment of rat prostatic epithelial cells with cholesteryl hemisuccinate (ChH) resulted in a time- and dose-dependent inhibition of the stimulatory effect of the neuropeptide vasoactive intestinal peptide (VIP) on cyclic AMP accumulation, with a 40% decrease in the response to a maximally effective VIP concentration. Cell treatment with ChH led also to a similar blocking of isoproterenol (a beta-adrenergic agonist) action but did not modify forskolin (which is assumed to act directly on the catalytic unit of adenylate cyclase) activity upon cyclic AMP levels. The levels of the transduction protein Gs were similar in membranes from both control and ChH-treated cells as suggested by experiments on cholera toxin-catalyzed ADP-ribosylation. The inhibitory effect of ChH was accompanied by an increase of membrane microviscosity as estimated by measurements of fluorescence polarization. Experiments on VIP binding indicated that increasing cholesterol concentration in the plasma membrane led to a higher VIP binding capacity without changes in the affinity of VIP receptors. These data suggest that membrane cholesterol incorporation diminishes the coupling efficiency between adenylate cyclase and the VIP-receptor complex or other receptor systems (i.e., desensitization) due to an increase of plasma membrane rigidity.  相似文献   

6.
1. The number (but not the affinity) of vasoactive intestinal peptide (VIP) receptors in small intestinal epithelial cells decreased following intestinal ischaemia in rats as compared to sham-operated animals. 2. There was a parallel decrease of the efficiency (but not the potency) of the neuropeptide upon cyclic AMP formation at the same level after intestinal ischaemia. 3. The surgical manipulation did not modify the level of VIP immunoreactivity in the gut segment studied. 4. These results suggest that the VIPergic system is not directly involved in the high loss of water and electrolytes that appears following intestinal ischaemia.  相似文献   

7.
The effects of experimental uremia on the concentration of vasoactive intestinal peptide (VIP) in duodenum as well as on the interaction of this neuropeptide with the corresponding epithelial cells were studied in rats. Duodenal VIP concentration was significantly decreased in uremic rats as compared to control animals. The specific binding of VIP to duodenal epithelial cells increased in rats with uremia due to an increase in the number of VIP receptors rather than a change in the binding affinity or in the extent of VIP degradation. On the other hand, the efficacy but not the potency of VIP upon cyclic AMP generation varied in parallel to that observed at the receptor level.  相似文献   

8.
The effects of alterations in the membrane lipid environment on vasoactive intestinal peptide (VIP) binding and VIP-stimulated cyclic AMP accumulation have been analyzed by arachidonic acid treatment of prostatic epithelial cells from rats at puberty and maturity, two critical developmental periods with characteristic lipidic and androgenic statuses. Treating cells with 0.1 mM arachidonic acid for 15 min at 37°C increased the affinity of VIP receptors and the potency of the neuropeptide (up to five times) in the formation of cyclic AMP at maturity, but not at puberty. The average plasma membrane fluidity (as measured by fluorescence polarization of diphenylhexatriene) remained unmodified after arachidonic acid treatment of cells. The modifications observed in mature rats were specific for the VIP receptor/effector system, since cyclic AMP stimulation by isoproterenol or forskolin was not affected by cell treatment with arachidonic acid. These results are compatible with the existence of a particular lipidic microdomain surrounding the VIP receptor in the cell membrane that would be altered by exposure to arachidonic acid (either directly or through conversion of arachidonic acid to its metabolites, as suggested by experiments on inhibition of the arachidonic acid cascade). This would make it possible for the activation of protein kinase C to phosphorylate VIP receptors in cells from mature rats, but not in those from pubertal animals with a very different membrane lipid composition (as suggested by the corresponding values of membrane fluidity and transition temperature).  相似文献   

9.
Vasoactive intestinal peptide (VIP) receptors and VIP-dependent cyclic AMP production were studied in rat colonic epithelial cells 3 days after a 60% resection of the small intestine. Basal cyclic AMP levels were similar in both control and resected animals. The potency, but not the efficiency, of the peptide on the stimulation of cyclic AMP production was diminished in cells from resected rats. Accordingly, the affinity of VIP receptors, but not the binding capacity, decreased as a consequence of the loss of a part of the small intestinal mucosa. These observations are consistent with the known inhibitory role of cyclic AMP on cell proliferation in colonic epithelium and other tissues and suggest a participation of VIP acting through the cyclic nucleotide in the compensatory hyperproliferative response of the colon following massive resection of the small intestine.  相似文献   

10.
Vasoactive intestinal peptide (VIP) stimulated cyclic AMP production in rat peritoneal macrophages. The stimulatory effect of VIP was dependent on time, temperature and cell concentration, and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). At 15 degrees C, the response occurred in the 0.1-1000 nM range of VIP concentrations. Half maximal stimulation of cellular cyclic AMP (ED50) was obtained at 1.2 +/- 0.5 nM VIP, and maximal stimulation (about 3-fold basal level) was obtained between 100-1000 nM. The cyclic AMP system of rat peritoneal macrophages showed a high specificity for VIP. The order of potency observed in inducing cyclic AMP production was VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, pancreastatin and octapeptide of cholecystokinin did not modify cyclic AMP levels at concentrations as high as 1 microM. The beta-adrenergic agonist isoproterenol increased the cyclic AMP production and show additive effect with VIP. Somatostatin inhibits the accumulation of cyclic AMP in the presence of both vasoactive intestinal peptide and isoproterenol. The finding of a VIP-stimulated cyclic AMP system in rat peritoneal macrophages, together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, strongly suggest that VIP may be involved in the regulation of macrophage function.  相似文献   

11.
The specific binding of vasoactive intestinal peptide (VIP) and the stimulatory effect of VIP upon cyclic AMP accumulation in isolated epithelial cells of rat ventral prostate were age dependent. The number of VIP receptors decreased but the efficiency of VIP on cyclic AMP accumulation increased in prostatic epithelium when considering the periods 35-65 days and 3-6 months. Since these features could be related to the known age-related decrease of androgen and androgen-receptor levels, we studied the effect of testosterone and its 5 alpha-reduced metabolite dihydrotestosterone upon both steps of VIP action. The two steroid hormones exerted a non-competitive inhibition on VIP-induced cyclic AMP accumulation but did not modify VIP binding to its specific receptors. This modulatory effect of androgens might involve their interaction with specific sites on the cell membrane leading to modifications of membrane activities including adenylate cyclase, as has been suggested by an increasing number of recent reports.  相似文献   

12.
The specific binding of vasoactive intestinal peptide (VIP) and the stimulatory effect of the neuropeptide on cyclic AMP in duodenal epithelial cells were modified 3 days following pancreaticobiliary exclusion. The binding capacity, but not the affinity, of VIP receptors decreased (by about 50%) as a consequence of the surgical manipulation. VIP was equally potent but showed a lower efficiency (about 45%) in stimulating cyclic AMP after ligation of the pancreatic and bile ducts. These observations may be either a consequence or a cause of the adaptive response of duodenal epithelium, the last possibility suggesting a role of VIP in the mechanisms of growth and differentiation of intestinal mucosa.  相似文献   

13.
Isolated rat enterocytes exposed to the insecticide lindane (the gamma-isomer of hexachlorocyclohexane, HCCH) showed an important decrease in the efficiency of the neuropeptide vasoactive intestinal peptide (VIP) upon the stimulation of cyclic AMP accumulation. The effect of lindane was time- and dose-dependent, optimal conditions being reached after 5 min incubation of cells at 25 degrees C with 0.5 mM of this organochlorine compound. Lindane action exhibited an important degree of specificity since the isomer alpha-HCCH and endrin reproduced the same inhibitory pattern but beta-HCCH and dieldrin were inactive. The inhibition of VIP-induced cyclic AMP accumulation could not be explained by a lindane-dependent reduction in the binding of VIP to its specific receptors. Among various possibilities, the results suggest the modification of membrane fluidity by lindane and/or the activation of Ca2+-dependent protein kinase C by this compound leading to phosphorylation of Gs/adenylate cyclase.  相似文献   

14.
VIP stimulates protein kinase activity in intestinal epithelial cells isolated from rat jejuno-ileum. The stimulation is time-dependent and is potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. The response occurs in the 0.1–10 nM range of VIP concentrations, half-maximal stimulation being observed with 0.7 nM VIP. The VIP-induced protien kinase activation is thus observed at concentrations similar to those promoting the accumulation of cyclic AMP (11). Secretin also stimulates protien kinase activity but with a 100-times lower potency than VIP, in agreement with the fact that secretin is a VIP agonist of 100-times lower potency with respect to cyclic AMP increase. Prostaglandins E1 and E2 (10?5 M), are also found to increase protein kinase activity.  相似文献   

15.
Vasoactive intestinal peptide (VIP) has been shown to increase cyclic AMP content in isolated epithelial cells of rat ventral prostate. The stimulatory effect of VIP was dependent on time and temperature and was potentiated by a phosphodiesterase inhibitor. At 15 degrees C, the response occurred in the 1 X 10(-10)-10(-7)M range of VIP concentrations. Half-maximal stimulation of cellular cyclic AMP was obtained at 1.4 nM and maximal stimulation (3-fold basal level) at about 100 nM VIP. Chicken VIP and porcine secretin were agonists of porcine VIP but exhibited a 2-times higher and a 170-times lower potency, respectively. A high concentration (1 X 10(-6)M) of glucagon, somatostatin, neurotensin, substance P, Met-enkephalin or Leu-enkephalin did not modify cAMP levels. The finding of a VIP-stimulated cAMP system in rat prostatic epithelial cells together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, as well as the presence of VIP-containing neurones innervating the male genitourinary tract, strongly suggest that VIP may be involved in prostatic growth regulation and function.  相似文献   

16.
Osteoclast formation is controlled by stromal cells/osteoblasts expressing macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), crucial for osteoclast progenitor cell proliferation, survival and differentiation, and osteoprotegerin (OPG) that inhibits the interaction between RANKL and its receptor RANK. Recent data have strongly indicated that the nervous system plays an important role in bone biology. In the present study, the effects of the neuropeptide vasoactive intestinal peptide (VIP), present in peptidergic skeletal nerve fibers, on the expression of RANKL, OPG, and M-CSF in osteoblasts and stromal cells have been investigated. VIP and pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38), but not secretin, stimulated rankl mRNA expression in mouse calvarial osteoblasts. In contrast, VIP inhibited the mRNA expressions of opg and m-csf, effects shared by PACAP-38, but not by secretin. VIP did not affect rankl, opg, or m-csf mRNA expression in mouse bone marrow stromal cells (BMSCs). The effects by VIP on the mRNA expression of rankl, opg, and m-csf were all potentiated by the cyclic AMP phosphodiesterase inhibitor rolipram. In addition, VIP robustly enhanced the phosphorylation of ERK and the stimulatory effect by VIP on rankl mRNA was inhibited by the MEK1/2 inhibitor PD98059. These observations demonstrate that activation of VPAC(2) receptors in osteoblasts enhances the RANKL/OPG ratio by mechanisms mediated by cyclic AMP and ERK pathways suggesting an important role for VIP in bone remodeling.  相似文献   

17.
The neuropeptide vasoactive intestinal peptide (VIP) has been shown to stimulate cyclic AMP accumulation in Leydig cells isolated from rat testis. The effect was dependent on time, temperature and cell concentration. At 15° half-maximal and maximal stimulation were observed at about 1 and 100 nM VIP, respectively. The interaction was specific since an order of potencies chicken VIP> rat VIP> secretin>glucagon and no effect of neurotensin and substance P were obtained. The efficiency of VIP was lower in pubertal rats and then increased in young-adult and adult animals. These results together with the known presence of VIP in the testis support the idea that VIP may be involved in the regulation and function of Leydig cells during development.  相似文献   

18.
4 beta phorbol-12, 13-dibutyrate (PDBu) stimulated cyclic AMP accumulation in GH3 pituitary tumour cells in the presence of isobutylmethylxanthine. This effect persisted after preincubation of cells with cholera or pertussis toxins. In contrast, vasoactive intestinal polypeptide (VIP)-stimulated cyclic AMP accumulation was inhibited by PDBu in a dose dependent fashion (IC50 = 5.1 nM). Thyroliberin (TRH) had a similar, but non-additive, stimulatory effect on cyclic AMP accumulation with PDBu, however it did not inhibit VIP stimulation. These results suggest that TRH may stimulate cyclic AMP accumulation through protein kinase C and that stimulation of adenylate cyclase by PDBu and TRH may occur distal to the guanine nucleotide binding regulatory proteins, Ns and Ni.  相似文献   

19.
The interaction of vasoactive intestinal peptide (VIP) with prostatic epithelial cells was studied after castration and testosterone replacement in pubertal and mature rats. The number of VIP receptors (but not the affinity) decreased 2 days after castration and returned to normal when subsequently treated with testosterone for 4 days. However, the stimulatory effect of VIP upon cyclic AMP accumulation was unaffected by the androgen withdrawal elicited by the surgical procedure. The results suggest the importance of androgens in the biosynthesis of VIP receptors and also in their coupling to adenylate cyclase by affecting the membrane fluidity.  相似文献   

20.
Pretreatment of rat prostatic epithelial cells with the tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate resulted in a decrease of both the potency of vasoactive intestinal peptide (VIP) upon the stimulation of cyclic AMP accumulation and the affinity of the receptors of this peptide. These effects were dose-dependent and could be reproduced by other stimulators of protein kinase C (PKC). Thus, it is conceivably that phosphorylation of VIP receptors by PKC regulates VIP receptor function in the prostate gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号