首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conventional whole cell patch-clamp technique was used to measure the resting membrane conductance and membrane currents of nonstimulated cultured human umbilical vein endothelial cells (HUVECs) in different ionic conditions. Three electrophysiological phenotypes of cultured HUVECs (n = 122) were determined: first, 20% of cells as type I mainly displaying the inwardly rectifying potassium current (IKi); second, 38% of cells as type II in which IKi was super-posed on a TEA-sensitive, delayed rectifying current; third, 27% of cells as type III predominantly displaying the outwardly rectifying current which was sensitive to TEA and slightly inhibited by a chloride channel blocker niflumic acid (N.A.). In cells of type I, the mean zero-current potential (V0) was dependent on extracellular K+ ([K+]o) but not on Cl-, indicating major permeability to K+. Whereas V0 of type II was also affected by extracellular Cl- ([Cl-]o), indicating the contribution of an outward Cl- current in setting V0. The cells of type III were not sensitive to decrease of [Cl-]o and the outward current was activated in a relative stable voltage range. This varying phenotypic expression and multipotential behavior of HUVECs suggests that the electrical features of HUVEC may be primarily determined by embryonic origin and local effect of the microenvironment. This research provided the detailed electrophysiological knowledge of the endothelial cells.  相似文献   

2.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

3.
Ion channels in rabbit cultured fibroblasts   总被引:2,自引:0,他引:2  
Large outward currents are recorded with the whole-cell patch-clamp technique on depolarization of rabbit cultured fibroblasts. Our findings suggest that these outward currents consist of two voltage-dependent components, one of which also depends on cytoplasmic calcium concentration. Total replacement of external Cl- by the large anion ascorbate does not affect the amplitude of the currents, indicating that both components must be carried by K+. Consistent with these findings with whole-cell currents, in single channel recordings from fibroblasts we found that most patches contain high-conductance potassium-selective channels whose activation depends on both membrane potential and the calcium concentration at the cytoplasmic surface of the membrane. In a smaller number of patches, a second population of high-conductance calcium-independent potassium channels is observed having different voltage-dependence. The calcium- and voltage-dependence suggest that these two channels correspond with the two components of outward current seen in the whole-cell recordings. The single channel conductance of both channels in symmetrical KCl (150 mM) is 260-270 pS. Both channels are highly selective for K+ over both Na+ and Cl-. The conductance of the channels when outward current is carried by Rb+ is considerably smaller than when it is carried by K+. Some evidence is adduced to support the hypothesis that these potassium channel populations may be involved in the control of cell proliferation.  相似文献   

4.
Interstitial cells of Cajal (ICC) undergo marked morphological changes on contraction of the musculature, making it essential to understand properties of mechanosensitive ion channels. The whole cell patch-clamp technique was used to identify and to characterize volume-activated Cl- currents in ICC cultured through the explant technique. Hypotonic solutions (approximately 210 mosM) activated an outwardly rectifying current, which reversed near the equilibrium potential for Cl-. Time-dependent inactivation occurred only at pulse potentials of +80 mV, with a time constant of 478 +/- 182 ms. The degree of outward rectification was calculated using a rectification index, the ratio between the slope conductances of +65 and -55 mV, which was 13.9 +/- 1.5 at 76 mM initial extracellular Cl- concentration. The sequence of relative anion permeability of the outwardly rectifying Cl- channel was I- > Cl- > aspartate-. The chloride channel blockers, DIDS and 5-nitro-2-(3-phenlypropl-amino)benzoic acid, caused a voltage-dependent block of the outwardly rectifying Cl- current, inhibition occurring primarily at depolarized potentials. On exposure to hypotonic solution, the slope conductance significantly increased at the resting membrane potential (-70 mV) from 1.2 +/- 0.2 to 2.0 +/- 0.4 nS and at the slow-wave plateau potential (-35 mV) from 2.1 +/- 0.3 to 5.0 +/- 1.0 nS. The current was constitutively active in ICC and contributed to the resting membrane potential and excitability at the slow-wave plateau. In conclusion, swelling or volume change will depolarize ICC through activation of outwardly rectifying chloride channels, thereby increasing cell excitability.  相似文献   

5.
Chloride channels activated by osmotic stress in T lymphocytes   总被引:17,自引:5,他引:12  
We have used whole-cell and perforated-patch recording techniques to characterize volume-sensitive Cl- channels in T and B lymphocytes. Positive transmembrane osmotic pressure (intracellular osmolality > extracellular osmolality) triggers the slow induction of a Cl- conductance. Membrane stretch caused by cellular swelling may underlie the activation mechanism, as moderate suction applied to the pipette interior can reversibly oppose the induction of Cl- current by an osmotic stimulus. Intracellular ATP is required for sustaining the Cl- current. With ATP-free internal solutions, the inducibility of Cl- current declines within minutes of whole-cell recording, while in whole- cell recordings with ATP or in perforated-patch experiments, the current can be activated for at least 30 min. The channels are anion selective with a permeability sequence of I- > SCN- > NO3-, Br- > Cl- > MeSO3- > acetate, propionate > ascorbate > aspartate and gluconate. GCl does not show voltage- and time-dependent gating behavior at potentials between -100 and +100 mV, but exhibits moderate outward rectification in symmetrical Cl- solutions. Fluctuation analysis indicates a unitary chord conductance of approximately 2 pS at -80 mV in the presence of symmetrical 160 mM Cl-. The relationship of mean current to current variance during the osmotic activation of Cl- current implies that each cell contains on the order of 10(4) activatable Cl- channels, making it the most abundant ion channel in lymphocytes yet described. The current is blocked in a voltage-dependent manner by DIDS and SITS (Ki = 17 and 89 microM, respectively, at +40 mV), the degree of blockade increasing with membrane depolarization. The biophysical and pharmacological properties of this Cl- channel are consistent with a role in triggering volume regulation in lymphocytes exposed to hyposmotic conditions.  相似文献   

6.
The single-channel behavior of the hyperpolarization-activated, ClC-2-like inwardly rectifying Cl- current (IClh), induced by long-term dibutyryl-cyclic-AMP-treated cultured cortical rat astrocytes, was analyzed with the patch-clamp technique. In outside-out patches in symmetrical 144 mM Cl-solutions, openings of hyperpolarization-activated small-conductance Cl channels revealed burst activity of two equidistant conductance levels of 3 and 6 pS. The unitary openings displayed slow activation kinetics. The probabilities of the closed and conducting states were consistent with a double-barrelled structure of the channel protein. These results suggest that the astrocytic ClC-2-like Cl- current Iclh is mediated by a small-conductance Cl channel, which has the same structural motif as the Cl- channel prototype CIC-0.  相似文献   

7.
The mechanosensitive channel of small conductance (MscS) is a membrane protein thought to act as a safety valve in bacteria, regulating the release of ions and small solutes when gated by membrane tension under challenging osmotic conditions. The influence of voltage on channel activation and the functional state depicted by the available crystal structure of MscS remain debated. Therefore, in an effort to relate electrophysiological measurements on MscS and properties of the MscS crystal conformation, we report here MscS's response to voltage and pressure as determined by patch-clamp experiments, as well as MscS electrostatics and transport properties as determined through all-atom molecular dynamics simulations of the protein embedded in a lipid bilayer, a 224,000-atom system. The experiments reveal that MscS is a slightly anion-selective channel with a conductance of approximately 1 ns, activated by pressure and inactivated in a voltage-dependent manner. On the other hand, the simulations, covering over 200 ns and including biasing electrostatic potentials, show that MscS restrained to the crystal conformation exhibits low conductance; unrestrained it increases the channel radius upon application of a large electrostatic bias and exhibits then ion conduction that matches experimentally determined conductances. The simulated conductance stems mainly from Cl- ions.  相似文献   

8.
Electrophysiologic properties of cultured human keratinocytes were studied using the patch voltage-clamp technique. Undifferentiated, proliferative keratinocytes grown in low Ca2+ medium had an average resting membrane potential of -24 mV. Voltage-clamp experiments showed that these cells had two membrane ionic currents: a large voltage-independent leak conductance, and a smaller voltage-dependent Cl- current that activated with depolarization. Increasing the extracellular Ca2+ concentration from 0.15 to 2 mM resulted in a doubling of the magnitude of the voltage-gated current and a shift in current activation to more negative potentials. Since levels of extracellular Ca2+ can alter the morphology and differentiation state of keratinocytes, the finding of a Ca2(+)-activated Cl- current in these cells suggests a role for this conductance in the initiation of differentiation.  相似文献   

9.
Addition of membrane vesicles prepared from the electric organ of Torpedo californica to the aqueous phase of a planar phospholipid bilayer system results in a large (up to 3 orders of magnitude) stepwise increase in membrane conductance. This increased conductance consists of two components: an ohmic background "leak" and a voltage-dependent, ideally anion-selective conductance. The anion conductance is low at voltages greater than +10 mV, rises sharply as the voltage becomes negative, and then saturates as the voltage becomes highly negative. (The trans side of the bilayer, to which vesicles are not added, is defined as ground.) Under high amplification, the anion conductance shows single channel behavior with a voltage-independent, single channel conductance of 13.9 +/- 0.1 pmho in 0.1 M Cl-. Furthermore, the anion channel, but not the background conductance, is inhibited by submillimolar concentrations of SITS and DIDS, two well known anion transport inhibitors. The inhibition is seen only when SITS or DIDS is added to the cis side. No cholinergic agents tested have any effect on the channel.  相似文献   

10.
A Cl- channel with large single-unit conductance and characteristic voltage-dependent inactivation was studied on cultured human fibroblasts. The channel was activated only after excision and lasting depolarization of the membrane patch. In inside-out configuration and in symmetrical 135 mM NaCl, the conductance was 300 pS. The channel was usually open at the membrane potentials between -20 to +20 mV, while more negative or positive voltages closed the channel. The time course of this apparent inactivation process was dependent on increasing potential. Recovery from inactivation was made possible by returning the membrane potential to 0 mV. The channel was selective to Cl- over Na+ with a PCl/PNa of 6. The order of permeability among anions was: I greater than Br = Cl greater than isethionate greater than F greater than glutamate. The channel was blocked by internal application of a derivative of the diphenylamine-2-carboxilate (Blocker 144) but not by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid.  相似文献   

11.
The ionic permeability of a voltage-dependent Cl channel of rat hippocampal neurons was studied with the patch-clamp method. The unitary conductance of this channel was approximately 30 pS in symmetrical 150 mM NaCl saline. Reversal potentials interpreted in terms of the Goldman-Hodgkin-Katz voltage equation indicate a Cl:Na permeability ratio of approximately 5:1 for conditions where there is a salt gradient. Many anions are permeant; permeability generally follows a lyotropic sequence. Permeant cations include Li, Na, K, and Cs. The unitary conductance does not saturate for NaCl concentrations up to 1 M. No Na current is observed when the anion Cl is replaced by the impermeant anion SO4. Unitary conductance depends on the cation species present. The channel is reversibly blocked by extracellular Zn or 9-anthracene carboxylic acid. Physiological concentrations of Ca or Mg do not affect the Na:Cl permeability ratio. The permeability properties of the channel are consistent with a permeation mechanism that involves an activated complex of an anionic site, an extrinsic cation, and an extrinsic anion.  相似文献   

12.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

13.
The voltage-dependent K (KV) channel in Daudi human B lymphoma cells was characterized by using patch-clamp techniques. Whole-cell voltage-clamp experiments demonstrated that cell membrane depolarization induced a transient (time-dependent) outward current followed by a steady-state (time-independent) component. The time-dependent current resembled behavior of the type n channel, such as use dependence and a unique blockade by tetraethylammonium (TEA). Both time-dependent and time-independent currents were blocked by quinine with a similar IC50 (14.2 mM and 12.6 mM). Treatment with antisense oligonucleotide of human Kv1.3 gene significantly reduced both currents by 80%. Single-channel experiments showed that only one type of KV channel was recorded with a unitary conductance of approximately 19 pS. Consistent with whole-cell recordings, the channel activity in cell-attached patches remained in response to prolonged depolarization, and the remaining channel activity was blocked by quinine, but not TEA. Channel activity was scarcely seen in cell-attached patches after antisense treatment. Whole-cell current-clamp data showed that TEA, which blocks only the time-dependent current, caused a slight decrease in the membrane potential. In contrast, quinine and antisense, which block both time-dependent and -independent currents, strongly reduced the membrane potential. These data together suggest that the KV channel in Daudi cells does not completely inactivate and that the remaining channel activity due to this incomplete inactivation appears to be primarily responsible for maintaining the membrane potential.  相似文献   

14.
1. Properties of the voltage-dependent anion-selective channel in cultured smooth muscle cells of the rat aorta were studied using the patch-clamp technique. 2. The channel had a single channel conductance of 346 +/- 4 pS (n = 43, mean +/- SEM) with symmetrical 142 mM-Cl- solution in inside-out patch configurations. 3. The channel was activated spontaneously at a potential range -20 approximately +20 mV and inactivated more rapidly with increases to more positive or negative potentials. 4. The channel was selective for anions and the permeability ratio for monovalent anion was Br-:Cl-:HCOO-:CH3COO-:propionate-:aspartate- = 1.1:1:0.7:0.4: less than 0.02: less than 0.02. 5. The openings of the channels were observed more frequently in inside-out membrane patches than in cell-attached ones, and were independent of intracellular free Ca concentrations. 6. The density of this channel was estimated to be 1.3/micron2. 7. Physiological roles of the channel were discussed.  相似文献   

15.
Single-channel patch-clamp experiments were performed on MDCK cells in order to characterize the ionic channels participating in regulatory volume decrease (RVD). Subconfluent layers of cultured cells were exposed to a hypotonic medium (150 mOsm), and the membrane currents at the single-channel level were measured in cell-attached experiments. The results indicate that MDCK cells respond to a hypotonic swelling by activating several different ionic conductances. In particular, a potassium and a chloride channel appeared in the recordings more frequently than other channels, and this allowed a more detailed study of their properties in the inside-out configuration of the patch-clamp technique. The potassium channel had a linear I/V curve with a unitary conductance of 24 +/- 4 pS in symmetrical K+ concentrations (145 mM). It was highly selective for K+ ions vs. Na+ ions: PNa/PK less than 0.04. The time course of its open probability (P0) showed that the cells responded to the hypotonic shock with a rapid activation of this channel. This state of high activity was maintained during the first minute of hypotonicity. The chloride channel participating in RVD was an outward-rectifying channel: outward slope conductance of 63.3 +/- 4.7 pS and inward slope conductance of 26.1 +/- 4.9 pS. It was permeable to both Cl- and NO3- and its maximal activation after the hypotonic shock was reached after several seconds (between 30 and 100 sec). The activity of this anionic channel did not depend on cytoplasmic calcium concentration. Quinine acted as a rapid blocker of both channels when applied to the cytoplasmic side of the membrane. In both cases, 1 mM quinine reversibly reduced single-channel current amplitudes by 20 to 30%. These results indicate that MDCK cells responded to a hypotonic swelling by an early activation of highly selective potassium conductances and a delayed activation of anionic conductances. These data are in good agreement with the changes of membrane potential measured during RVD.  相似文献   

16.
Single-channel currents through chloride channels were recorded in cultured hippocampal neurones from rats using the patch-clamp method. The channel is active at voltages between -80 and +80 mV, and the time spent in the open state increases with depolarization (almost fourfold for 120 mV). The channel conductance is 62 pS in symmetrical 150 mM NaCl saline. In salt gradient conditions the channel was measurably permeable to Na+. Substitution of NO3- and Br- for Cl- gave higher single-channel currents, meaning a higher permeability of the channel toward the two anions than to Cl-. SO4(2-) ions were poorer charge carriers, yet contributed measurable inward current at negative voltages. Channel activity appeared independent of intracellular Ca2+ concentration. Taken together, these features would suggest for this channel a role in stabilizing resting membrane potential and in maintaining normal cell excitability.  相似文献   

17.
Free cytosolic Ca~(2+) ([Ca~(2+)]_(cyt)) is an ubiquitous second messenger in plant cell signaling, and [Ca~(2+)]_(cyt) elevation is associated with Ca~(2+)-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca~(2+) channels and their regulation remains limited in planta. A type of voltage-dependent Ca~(2+)-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba~(2+) and Ca~(2+), and their activities can be inhibited by micromolar Gd~(3+). The unitary conductance and the reversal potential of the channels depend on the Ca~(2+) or Ba~(2+) gradients across the plasma membrane. The inward whole-cell Ca~(2+) (Ba~(2+)) current, as well as the unitary current amplitude and NP. of the single Ca~(2+) channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NP_o of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.  相似文献   

18.
In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was selective for anions and sensitive to Gd(3)+. In on-cell patches, single-channel events appeared with a lag period of approximately 15 min after a hypotonic challenge. Under isotonic conditions, cell-attached patches were silent, but patch excision led to activation of currents that consisted of multiple large-conductance unitary steps. The current displayed voltage- and time-dependent inactivation similar to that of whole-cell current. Voltage-dependent activation profile was bell-shaped with the maximum open probability at -20 to 0 mV. The channel in inside-out patches had the unitary conductance of approximately 400 pS, a linear current-voltage relationship, and anion selectivity. The outward (but not inward) single-channel conductance was suppressed by extracellular ATP with an IC(50) of 12.3 mM and an electric distance (delta) of 0.47, whereas the inward (but not outward) conductance was inhibited by intracellular ATP with an IC(50) of 12.9 mM and delta of 0.40. Despite the open channel block by ATP, the channel was ATP-conductive with P(ATP)/P(Cl) of 0.09. The single-channel activity was sensitive to Gd(3)+, SITS, and NPPB, but insensitive to phloretin, niflumic acid, and glibenclamide. The same pharmacological pattern was found in swelling-induced ATP release. Thus, it is concluded that the volume- and voltage-dependent ATP-conductive large-conductance anion channel serves as a conductive pathway for the swelling-induced ATP release in C127i cells.  相似文献   

19.
Plants have developed strategies to circumvent limitations in water supply through the adjustment of stomatal aperture in relation to the photosynthetic capacity (water-use efficiency). The CO2 sensor of guard cells, reporting on the metabolic status of the photosynthetic tissue, is, however, as yet unknown. We elucidated whether extracellular malate has the capability to serve as a signal metabolite in regulating the membrane properties of guard cells. Patch-clamp studies showed that slight variations in the external malate concentration induced major alterations in the voltage-dependent activity of the guard cell anion channel (GCAC1). Superfusion of guard cell protoplasts with malate solutions in the physiological range caused the voltage-gate to shift towards hyperpolarized potentials (Km(mal) = 0.4 mM elicits a 38 mV shift). The selectivity sequence of the anion channel NO3- (4.2) > or = I- (3.9) > Br- (1.9) > Cl- (1) >> mal (0.1) indicates that malate is able to permeate GCAC1. The binding site for shifting the gate is, however, located on the extracellular face of the channel since cytoplasmic malate proved ineffective. Single-channel analysis indicates that extracellular malate affects the voltage-dependent mean open time rather than the unitary conductance of GCAC1. In contrast to malate the rise in the extracellular Cl- concentration increases the unit conductance of the anion efflux channel. We suggest that stomata sense changes in the intercellular CO2 concentration and thus the photosynthetic activity of the mesophyll via feedback regulation of anion efflux from guard cells through malate-sensitive GCAC1.  相似文献   

20.
In leaf mesophyll cells of pea (Pisum sativum) light induces a transient depolarization that is at least partly due to an increased plasma membrane conductance for anions. Several channel types were identified in the plasma membrane of protoplasts from mesophyll cells using the patch-clamp technique. One of these was an anion channel with a single-channel conductance of 32 picasiemens in symmetrical 100/100 KCl solutions. In asymmetrical solutions the reversal potential indicates a high selectivity for Cl- over K+ at high cytoplasmic Cl-. At negative membrane voltages the channel openings were interrupted by very short closures. In the open channel conductance several substrates were identified. At a cytoplasmic negative logarithm of Ca concentration higher than 6.3, no channel openings were observed. When the protoplast was illuminated in the cell-attached configuration, at least one channel type had a higher opening probability. This channel can tentatively be identified as the above-described anion channel based on conductance and the characteristic short closures at negative membrane potentials. This light activation of the 32-picasiemen anion channel is a strong indication that this channel conducts the light-induced depolarizing current. Because channel activity is strongly Ca2+-dependent, a role of cytoplasmic Ca2+ concentration changes in the light activation of the conductance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号