首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A gene encoding staphylokinase from Staphylococcus aureus was cloned into the plant transformation binary vector pCAMBIA1303. The presence of a CaMV::sak-gusA-mgfp gene in Agrobacterium was confirmed by polymerase chain reaction PCR. Tobacco seedlings were used as explants for Agrobacterium tumefaciens-mediated transformation with the pCAMBIA1303sak vector carrying the fusion gene construct CaMV::sak-gusA-mgfp and the expression of the fusion gene was identified in Nicotiana tabacum plants by β-glucuronidas assay. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Ethylene production was measured during vegetative and reproductive development in normal tobacco plants and in transgenic tobacco plants carrying antisense genes for tomato ACC oxidase driven by the 35S CaMV promoter (Hamilton et al., 1990). When expressed in three independently derived transgenic plants, the antisense ethylene gene failed to affect ethylene production in young/mature leaves or in stems but it did inhibit ethylene production in roots by 37–58%. Ethylene production in developing flowers (i.e. from small unopened flower buds up until open flowers at anthesis) was not affected in transgenic plants but ethylene production in fruits was inhibited by 35%. The most dramatic effect on ethylene production in transgenic plants was seen immediately after wounding leaf tissue, in which case the antisense gene inhibited wound ethylene production by 72%. Thus, the antisense gene composed of a 35S CaMV promoter driving a heterologous ACC oxidase sequence had differential effects on ethylene production in tobacco plants.  相似文献   

3.
4.
Plants tolerate heavy metals through sequestration with cysteine-rich peptides, phytochelatins. In this reaction, the rate limiting step is considered to be the supply of cysteine, which is synthesized by cysteine synthase (CS, EC 4.2.99.8) from hydrogen sulfide andO-acetylserine. In this study, we transformed tobacco (Nicotiana tabacum) plants withRCS1, a cytosolic cysteine synthase gene of rice (Oryza sativa), and examined their sensitivity to cadmium. The transgenic plants had up to 3-fold higher activity of cysteine synthase than wild-type plants. Upon exposure to cadmium, they exhibited obvious tolerance with much greater growth than wild-type plants. The level of phytochelatins in shoots was higher in transgenic than in wild-type plants after cadmium treatment, suggesting that cadmium was actively trapped by phytochelatins. However, the cadmium concentration per g fresh weight of whole transgenic plants was 20 percnt; lower than that of wild-type plants, suggesting cadmium to be either actively excreted or diluted by fast growth. Genetic analysis of progenies clearly showed segregation of cadmium tolerance, indicating that the trait resulted from the introduced gene. These results suggest that introduction of a cysteine synthase gene into tobacco plants resulted not only in high level production of sulfur-containing compounds that detoxify cadmium, but also in active elimination of cadmium toxicity from plant bodies.  相似文献   

5.
Agroinfiltration is employed as a fast way to directly create marker-free transgenic tobacco plants. As an example for the efficiency of the method, Agrobacterium cells harboring a marker-free vector coding for β-glucuronidase (GUS) were infiltrated into the leaf discs of Nicotiana tabacum, which were then used as explants for marker-free plant regeneration by tissue culture. Through GUS staining, a large number of small calli were shown to be stably transformed on the treated leaf discs at 17 days after agroinfiltration. Most importantly, after continuous culture of the leaf discs until shoot regeneration, about 15% of the regenerants were proven to be transformants by polymerase chain reaction (PCR) analysis.  相似文献   

6.
The range of sap-sucking insect pests to which GNA, (the mannose specific lectin from snowdrops (Galanthus nivalis) has been shown to be insecticidal in artificial diets has been extended to include the peach potato aphid (Myzus persicae). A gene construct for constitutive expression of GNA from the CaMV35S gene promoter has been introduced into tobacco plants. A transgenic tobacco line which expresses high levels of GNA has been shown to have enhanced resistance toM. persicae in leaf disc and whole plant bioassays,demonstrating the potential for extending transgenic plant technology to the control of sap-sucking insect pests.  相似文献   

7.
Summary Cultures of Nicotiana tabacum cells homozgous for a mutation (S4) at the SuRB locus that confers resistance to the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl (Chaleff and Ray 1984; Chaleff and Bascomb 1987) were used to isolate a doubly mutant cell line (S4 Hra/S4+) resistant to even higher herbicide concentrations. Growth of cells homozygous for both the S4 and Hra mutations (S4 Hra/S4 Hra) was uninhibited by a herbicide concentration 500-fold higher than a concentration by which growth of S4+/S4+ callus was inhibited by 75%. Plants homozygous for both mutations were at least five-fold more resistant to foliar applications of chlorsulfuron than were singly mutant S4+/S4+ plants. This enhanced resistance was inherited as a single, semidominant, nuclear trait that is genetically linked to the S4 mutation. Acetolactate synthase (ALS) activity in extracts of leaves of doubly mutant (S4 Hra/S4 Hra) plants was approximately 20-fold more resistant to inhibition by chlorsulfuron and sulfometuron methyl than was ALS activity in singly mutant (S4+/ S4+) leaf extracts, which was in turn more resistant to inhibition by these compounds than was the normal enzyme. Extracts prepared from plants of these three genotypes possessed the same ALS specific activities. Therefore, Hra represents a second independent mutation at or near the SuRB locus that reduces the sensitivity of tobacco ALS activity to inhibition by sulfonylurea herbicides.  相似文献   

8.
9.
Cysteine serves as a precursor for the synthesis of various sulfur-containing metabolites, and the cysteine synthase (CS) gene plays a central role in the sulfur cycle in nature. In the present study, rcs1, a cytosolic CS gene of rice, was introduced into the genome of tobacco (Nicotiana tabacum). The tolerance of wild-type tobacco plants as well as of the resulting transgenic tobacco plants overexpressing the rcs1 gene to toxic levels of ozone (O3, 0.15 μ mol−1) was measured after various lengths of exposure. Leaf lesions in plants exposed for 2 weeks to O3 were more prevalent in the leaves of the wild-type plants than in those of the transgenic tobacco plants. Transgenic tobacco plants showed a higher growth rate and a higher chlorophyll content than the wild-type plants. Cysteine synthase activity and cysteine and glutathione contents were higher in transgenic plants than in wild-type plants irrespective of the length of the O3 treatment. Our results indicate that the CS gene plays a role in the protection of the plant against toxic O3 gas, probably through the mechanism of an over-accumulation of such sulfur-rich antioxidants as cysteine and glutathione.  相似文献   

10.
11.
The aim of this work was to analyse the response ofNH4 + assimilation in leaves of tobacco plants(Nicotiana tabacum L. cv. Tennessee 86), to different Bapplications (B1, 5 M H3BO3; B2, 10M H3BO3; B3, 20 MH3BO3). The plants were grown under controlledenvironmental conditions and received a complete nutrient solution. In thisexperiment, we analysed the foliar concentrations of B andNH4 +, as well as the corresponding enzymaticactivities: GS,GOGAT, GDH, PEPC; the end products of this assimilation, aminoacids and proteins; and finally the concentration of non-structural sugars. Ourresults indicated that the different B treatments influenced the utilization ofNH4 + by tobacco leaves. The B3 treatment registeredthe lowest NH4 + concentration, and B1 the highest,due probably to the higher GS, GOGAT and GDH activities registered at B3.Conversely, a decline in the concentration of non-structural sugars wasrecordedat B3. In addition, the high assimilation rate caused a progressiveaccumulationof amino acids as well as proteins, and boosted biomass production in theleaves.  相似文献   

12.
The effects of boron (B) deficiency on carbohydrate concentrations and the pattern of phenolic compounds were studied in leaves of tobacco plants (Nicotiana tabacum L.). Plants grown under B deficiency showed a notable increase in leaf carbohydrates and total phenolic compounds when compared to controls. The qualitative composition of phenolics was analyzed by HPLC-mass spectrometry. The level of caffeate conjugates (i.e., chlorogenic acid) increased in B-deficient plants. In addition, the accumulation of two caffeic acid amides (N-caffeoylputrescine and putative dicaffeoylspermidine) was observed.  相似文献   

13.
A comparative study of photosystem II complexes isolated from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contains normal stacked thylakoid membranes, and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked grana or essentially unstacked thylakoids with occasional membrane doublings, has been carried out. The corresponding photosystem II complexes had an O2 evolving activity ranging from 290 (for the wild type) to 1100 mol O2 x mg chlorophyll-1 x h-1 (for the mutant Su/su var. Aurea). The reduced photosynthetic unit size was also obvious in the mangenese and cytochromeb559 content. The photosystem II complex from the wild type contained 4 Mn and 1 cytochromeb559 per 200 to 280 chlorophylls, while the corresponding value for the mutant Su/su var. Aurea was 4 Mn and 1 cytochromeb559 per 35 to 60 chlorophylls. We have also examined the polypeptide composition and show that the photosystem II complex from the wild type consisted of polypeptides of 48, 42, 33, 32, 30, 28, 23, 21, 18, 16 and 10 kDa, while the mutant complex mainly contained the polypeptides of 48, 42, 33, 32, 30, 28 and 10 kDa. In the mutant photosystem II complex the light-harvesting chlorophyll protein (peptide of 28 kDa) was reduced by a factor of 5 to 6 as compared to the wild type. With respect to the peptide composition and the photosynthetic unit size, the Triton-solubilized photosystem II complex from the mutant Su/su var. Aurea was very similar to O2 evolving photosystem II reaction center core complexes.Abbreviations PS photosystem - chl chlorophyll - LHCP light-harvesting chlorophyll a/b protein complex  相似文献   

14.
Thrombomodulin is a membrane-bound protein that plays an active role in the blood coagulation system by binding thrombin and initiating the protein C anticoagulant pathway. Solulin™ is a recombinant soluble derivative of human thrombomodulin. It is used for the treatment of thrombotic disorders. To evaluate the production of this pharmaceutical protein in plants, expression vectors were generated using four different N-terminal signal peptides. Immunoblot analysis of transiently transformed tobacco leaves showed that intact Solulin™ could be detected using three of these signal peptides. Furthermore transgenic tobacco plants and BY2 cells producing Solulin™ were generated. Immunoblot experiments showed that Solulin™ accumulated to maximum levels of 115 and 27 μg g−1 plant material in tobacco plants and BY2 cells, respectively. Activity tests performed on the culture supernatant of transformed BY2 cells showed that the secreted Solulin™ was functional. In contrast, thrombomodulin activity was not detected in total soluble protein extracts from BY2 cells, probably due to inhibitory effects of substances in the cell extract. N-terminal sequencing was carried out on partially purified Solulin™ from the BY2 culture supernatant. The sequence was identical to that of Solulin™ produced in Chinese hamster ovary cells, confirming correct processing of the N-terminal signal peptide. We have demonstrated that plants and plant cell cultures can be used as alternative systems for the production of an active recombinant thrombomodulin derivative.  相似文献   

15.
Summary A chimeric gene under the control of the hsp70 promoter of Drosophila is heat regulated in roots, stems and leaves, but not in pollen of transgenic tobacco plants. For these and other parameters, it behaves similarly to plant heat-shock genes.  相似文献   

16.
Transgenic tobacco plants and progeny carrying coding sequences for neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) were recovered following microprojectile bombardment of tobacco leaves. Transgenic plants were regenerated from bombarded leaf pieces of tobacco cvs. Xanthi and Ky 17 which were cultured in the presence of 100 or 200 g/ml kanamycin for six to eight weeks. Among 160 putative transgenic plants from at least 16 independent transformation events 76% expressed NPTII, and 50% expressed GUS. Southern analysis of plants expressing either one or both of the enzymes indicated DNA in high molecular weight DNA in 8 of 9 independent transformants analyzed. Two independent transformants and their progeny were analyzed in detail. Analysis of progeny for quantitative enzyme levels of NPTII and GUS, and Southern analysis of parents and progeny clearly demonstrated that the genes were transmitted to progeny. One transformant demonstrated Mendelian ratios for seed germination on kanamycin-containing medium while the other transformant had non-Mendelian ratios. DNA analysis of progeny indicate complex integration of the plasmid DNA, and suggest that rearrangements of this DNA has occurred. These results are consistent with other methods of direct DNA uptake into cells, and verify that the microprojectile bombardment method is capable of DNA delivery into intact plant cells which can give rise to transgenic plants and progeny.  相似文献   

17.
In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-CX17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.  相似文献   

18.
Shoot and root mass of tobacco plants treated with only 0.05 μM boron was decreased by 25 and 50 %, respectively, when compared to plants sufficiently supplied with B (2 and 5 μM). Leaf B content of 0.05 μM B-treated plants decreased (about 80–90 %) when compared to 2 μM B treated plants; this drop of B content were not as marked (about 25–45 %) in roots. Leaf and root nitrate contents in B-deficient plants were 45–60 % and 35–45 % lower, respectively, than those from 2 and 5 μM B treated plants. It is suggested that B deficiency might decrease nitrate uptake rather than nitrate reductase activity in tobacco plants.  相似文献   

19.
20.
Previous investigations (Specht, S., Pistorius, E.K. and Schmid, G.H.: Photosynthesis Res. 13, 47–56, 1987) of Photosystem II membranes from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contain normally stacked thylakoid membranes and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked or essentially unstacked thylakoids with occasional membrane doublings, have been extended by using monospecific antisera raised against the three extrinsic polypeptides of 33,21 and 16 kDa. The results show that all three peptides are synthesized as well in wild type tobacco as in the two mutants to about the same level and that they are present in thylakoid membranes of all three plants. However, in the mutants the 16 and 21 kDa peptides (but not the 33 kDa peptide) are easily lost during solubilization of Photosystem II membranes. In the absence of the 16 and 21 kDa peptide Photosystem II membranes from the mutants have a higher O2 evolving activity without addition of CaCl2 than the wild type Photosystem II membranes. On the other hand, after removal of the 33 kDa peptide no significant differences in the binding of Mn could be detected among the three plants. The results also show that reaction center complexes from wild type tobacco and the mutant Su/su are almost identical to the Triton-solubilized Photosystem II membranes from the mutant Su/su var. Aurea.Abbreviations PS photosystem - chl chlorophyll - LHCP light harvesting chlorophyll a/b protein complex - WT wild type - OEE1, OEE2 and OEE3 oxygen evolution enhancing complex of 29–36 kDa, 21–24 kDa and 16–18 kDa, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号