首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasion of epithelial cells is a major virulence determinant of Candida albicans ; however, the molecular events that occur during invasion are not discerned. This study is aimed to elucidate the role of the host's actin remodeling and involvement of small GTPases during invasion. Actin filaments formed a rigid ring-like structure in the rabbit corneal epithelial cell line SIRC after C. albicans invasion. During invasion, an increase in the mRNA content of Cdc42, Rac1 and RhoA GTPase was observed in SIRC cells. Immunochemical staining and expression of chimeric green fluorescent protein (GFP)-GTPases showed that all three GTPases colocalize at invasion and actin polymerization sites. This colocalization was not seen in SIRC cells expressing a GFP-tagged dominant-negative mutant of GTPases. Inhibition of invasion was observed in SIRC cells expressing dominant-negative mutants of Rac1 and RhoA GTPases. Involvement of zonula occludens-1 (ZO-1) was observed in the process of actin-mediated endocytosis of C. albicans . Actin, GTPases and ZO-1 were colocalized in epithelial cells during uptake of polymethylmethacrylate beads coated with spent medium from a C. albicans culture. The results indicate that host actin remodeling and recruitment of small GTPases occur during invasion and molecules that are shed or secreted by C. albicans are probably responsible for cytoskeletal reorganization.  相似文献   

2.
3.
Candida albicans and C. dubliniensis are very closely related yeast species. In this study, we have conducted a thorough comparison of the ability of the two species to produce hyphae and their virulence in two infection models. Under all induction conditions tested C. albicans consistently produced hyphae more efficiently than C. dubliniensis. In the oral reconstituted human epithelial model, C. dubliniensis isolates grew exclusively in the yeast form, while the C. albicans strains produced abundant hyphae that invaded and caused significant damage to the epithelial tissue. In the oral-intragastric infant mouse infection model, C. dubliniensis strains were more rapidly cleared from the gastrointestinal tract than C. albicans. Immunosuppression of Candida-infected mice caused dissemination to internal organs by both species, but C. albicans was found to be far more effective at dissemination than C. dubliniensis. These data suggest that a major reason for the comparatively low virulence of C. dubliniensis is its lower capacity to produce hyphae.  相似文献   

4.
The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to inhibit effective destruction by host phagocytes. Using live cell video microscopy, we show here for the first time that C. albicans inhibits cell division in macrophages undergoing mitosis. Inhibition of macrophage cell division is dependent on the ability of C. albicans to form hyphae, as it is rarely observed following phagocytosis of UV-killed or morphogenesis-defective mutant Candida. Interestingly, failed cell division following phagocytosis of hyphal C. albicans is surprisingly common, and leads to the formation of large multinuclear macrophages. This raises question as to whether inhibition of macrophage cell division is another virulence attribute of C. albicans or enables host macrophages to contain the pathogen.  相似文献   

5.
Genistein effects on growth and cell cycle ofCandida albicans   总被引:7,自引:0,他引:7  
Microbial virulence is generally considered to be multifactorial with infection resulting from the sum of several globally regulated virulence factors. Estrogen may serve as a signal for global virulence induction in Candida albicans. Nonsteroidal estrogens and estrogen receptor antagonists may therefore have interesting effects on yeast and their virulence factors. Growth of C. albicans was monitored by viable plate counts at timed intervals after inoculation into yeast nitrogen broth plus glucose. To determine if increased growth of yeast in the presence of estradiol was due to tyrosine kinase-mediated signaling, we measured growth in the presence of genistein, estradiol or genistein plus estradiol and compared these conditions to controls, which were not supplemented with either compound. Unexpectedly, genistein stimulated growth of C. albicans. In addition, genistein was found to increase the rate of germination (possibly reflecting release from G(0) into G(1) cell cycle phase) and also increased Hsp90 expression, demonstrated by a dot blot technique which employed a commercial primary antibody detected with chemiluminescence with horseradish peroxidase-labeled secondary antibody. These biological effects may be attributable to genistein's activity as a phytoestrogen. In contrast, nafoxidine suppressed growth of Candida and mildly diminished Hsp90 expression. This study raises the possibility of receptor cross-talk between estrogen and isoflavinoid compounds, and antiestrogens which may affect the same signaling system, though separate targets for each compound were not ruled out.  相似文献   

6.
Anti-fungal therapy at the HAART of viral therapy   总被引:5,自引:0,他引:5  
HIV-positive patients receiving combination therapy (highly active anti-retroviral treatment, HAART) suffer significantly fewer oral infections with the opportunistic fungal pathogen Candida albicans than non-HAART-treated patients. One component of HAART is an inhibitor of the HIV proteinase, the enzyme required for correct processing of retroviral precursor proteins. It would appear that HIV proteinase inhibitors also have a direct effect on one of the key virulence factors of C. albicans, the secreted aspartic proteinases (Saps). This suggests that the reduction in C. albicans infections in HIV-positive patients might not be solely the result of improved immunological status but could also be caused by the HAART treatment directly inhibiting Candida proteinases.  相似文献   

7.
Candida albicans Ssa1 and Ssa2 are members of the HSP70 family of heat shock proteins that are expressed on the cell surface and function as receptors for antimicrobial peptides such as histatins. We investigated the role of Ssa1 and Ssa2 in mediating pathogenic host cell interactions and virulence. A C. albicans ssa1Δ/Δ mutant had attenuated virulence in murine models of disseminated and oropharyngeal candidiasis, whereas an ssa2Δ/Δ mutant did not. In vitro studies revealed that the ssa1Δ/Δ mutant caused markedly less damage to endothelial cells and oral epithelial cell lines. Also, the ssa1Δ/Δ mutant had defective binding to endothelial cell N-cadherin and epithelial cell E-cadherin, receptors that mediate host cell endocytosis of C. albicans. As a result, this mutant had impaired capacity to induce its own endocytosis by endothelial cells and oral epithelial cells. Latex beads coated with recombinant Ssa1 were avidly endocytosed by both endothelial cells and oral epithelial cells, demonstrating that Ssa1 is sufficient to induce host cell endocytosis. These results indicate that Ssa1 is a novel invasin that binds to host cell cadherins, induces host cell endocytosis, and is critical for C. albicans to cause maximal damage to host cells and induce disseminated and oropharyngeal disease.  相似文献   

8.
To identify Candida albicans genes whose proteins are necessary for host cell interactions and virulence, a collection of C. albicans insertion mutants was screened for strains with reduced capacity to damage endothelial cells in vitro. This screen identified CKA2. CKA2 and its homologue CKA1 encode the catalytic subunits of the protein kinase CK2. cka2delta/cka2delta strains of C. albicans were constructed and found to have significantly reduced capacity to damage both endothelial cells and an oral epithelial cell line in vitro. Although these strains invaded endothelial cells similarly to the wild-type strain, they were defective in oral epithelial cell invasion. They were also hypersusceptible to hydrogen peroxide, but not to high salt or to cell wall damaging agents. A cka1delta/cka1delta mutant caused normal damage to both endothelial cells and oral epithelial cells, and it was not hypersusceptible to hydrogen peroxide. However, overexpression of CKA1 in a cka2delta/cka2delta strain restored wild-type phenotype. Although the cka2delta/cka2delta mutant had normal virulence in the mouse model of haematogenously disseminated candidiasis, it had significantly attenuated virulence in the mouse model of oropharyngeal candidiasis. Therefore, Cka2p governs the interactions of C. albicans with endothelial and oral epithelial cells in vitro and virulence during oropharyngeal candidiasis.  相似文献   

9.
10.
Among fungal pathogens such as Candida albicans, acquired drug resistance has not been associated with plasmids or other transferable elements, but it is thought to involve primarily mutations and genetic or epigenetic phenomena. This prompted us to test some histone deacetylase inhibitors (HDACi) from our library, in combination with fluconazole, against C. albicans strains in vitro. Among the tested compounds, the two chloro-containing uracil-hydroxamates 1c and 1d showed a strong reduction of the MIC values on Candida strains that show the trailing growth effect. In this assay, 1c,d were more potent than SAHA, a well-known HDAC inhibitor, in reducing the Candida growth. More interestingly, 1c,d as well as SAHA were able to inhibit the fluconazole-induced resistance induction in Candida cultures.  相似文献   

11.
Staib P  Michel S  Köhler G  Morschhäuser J 《Gene》2000,242(1-2):393-398
Candida dubliniensis is a recently described pathogenic yeast of the genus Candida that is closely related to Candida albicans but differs from it in several phenotypic and genotypic characteristics, including putative virulence traits, which may explain differences in the spectrum of diseases caused by the two species. In contrast to C. albicans, a molecular genetic system to study virulence of C. dubliniensis is lacking. We have developed a system for the genetic transformation of C. dubliniensis that is based on the use of the dominant selection marker MPA(R) from C. albicans that confers resistance to mycophenolic acid (MPA). Using this transformation system, a GFP (green fluorescent protein) reporter gene that was genetically engineered for functional expression in C. albicans and placed under control of the inducible C. albicans SAP2 (secreted aspartic proteinase) promoter was integrated into the C. dubliniensis genome. MPA-resistant transformants containing the SAP2P-GFP fusion fluoresced under SAP2-inducing conditions but not under SAP2-repressing conditions. These results demonstrate that the MPA(R) selection marker is useful for transformation of C. dubliniensis wild-type strains, that the GFP reporter gene is functionally expressed in C. dubliniensis, and that the C. albicans SAP2 promoter can be used for controlled gene expression in C. dubliniensis. These genetic tools will allow the dissection of the differences in virulence characteristics between the two pathogenic yeast species at the molecular level.  相似文献   

12.
13.
14.
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.  相似文献   

15.
Candida albicans is the most frequently isolated fungus in immunocompromised patients associated with mucosal and deep-tissue infections, To investigate the correlation between virulence and resistance on a gene expression profile in C. albicans, we examined the changes in virulence-related genes during the development of resistance in C, albicans from bone marrow transplant patients using a constructed cDNA array representing 3096 unigenes. In addition to the genes known to be associated with azole resistance,16 virulence-related genes were identified, whose differential expressions were newly found to be associated with the resistant phenotype. Differential expressions for these genes were confirmed by RT-PCR independently. Furthermore, the up-regulation of EFG1, CPH2, TEC1, CDC24, SAP10, ALS9, SNF1, SP072 and BDF1, and the down-regulation of RAD32, IPF3636 and UB14 resulted in stronger virulence and invasiveness in the resistant isolates compared with susceptible ones. These findings provide a link between the expression of virulence genes and development of resistance during C. albicans infection in bone marrow transplant (BMT) patients, where C. albicans induces hyphal formation and expression change in multiple virulence factors.  相似文献   

16.
Candida albicans is an opportunistic pathogen that is of growing medical importance because it causes superficial, mucosal and systemic infections in susceptible individuals. Here, the effect of suramin, a polysulfonated naphthylurea derivative, on C. albicans development and virulence was evaluated. Firstly, it was demonstrated that suramin (500 microM) arrested its growth, showing a fungicidal action dependent on cell number. Suramin treatment caused profound changes in the yeast ultrastructure as shown by transmission electron microscopy. The more important changes were the enlargement of the fungi cytoplasmic vacuoles, the appearance of yeasts with an empty cytoplasm resembling ghost cells and a reduction in cell wall thickness. Suramin also blocked the transformation of yeast cells to the germ-tube and the interaction between C. albicans and epithelial cells. In order to ascertain that the action of suramin on C. albicans growth is a general feature instead of being strain-specific, the effects of suramin on 14 oral clinical strains isolated from healthy children and HIV-positive infants were analyzed. Interestingly, the strains of C. albicans isolated from HIV-positive patients were more resistant to suramin than strains isolated from healthy patients. Altogether, the results produced here show that suramin interfered with essential fungal processes, such as growth, differentiation and interaction with host cells.  相似文献   

17.
18.
Candida albicans is a diploid yeast with a dimorphic life history. It exists commensally in many healthy humans but becomes a potent pathogen in immunocompromised hosts. The underlying genetic mechanisms by which C. albicans switches from a commensal to a pathogenic form in the host are not well understood. To study the evolution of virulence in mammalian hosts, we used GAL1 as selectable marker system that allows for both positive and negative selection in selective media. We show that the deletion of one or both copies of GAL1 in the C. albicans genome does not change virulence in a systemic mouse model. We obtained estimates for the frequency of mitotic recombination at the GAL1 locus during systemic infection. Our observations suggest that genetic changes such as mitotic recombination and gene conversion occur at a high enough frequency to be important in the transition of C. albicans from a commensal to a pathogenic organism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号