首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The calcium-sensing receptor (CaR) mediates feedback control of Ca2+o (extracellular Ca2+) concentration. Although the mechanisms are not fully understood, the CaR couples to several important intracellular signalling enzymes, including PI-PLC (phosphoinositide-specific phospholipase C), leading to Ca2+i (intracellular Ca2+) mobilization, and ERK1/2 (extracellular-signal-regulated kinase 1/2). In addition to Ca2+o, the CaR is activated allosterically by several subclasses of L-amino acids, including the aromatics L-phenylalanine and L-tryptophan. These amino acids enhance the Ca2+o-sensitivity of Ca2+i mobilization in CaR-expressing HEK-293 (human embryonic kidney) cells and normal human parathyroid cells. Furthermore, on a background of a physiological fasting serum L-amino acid mixture, they induce a small, but physiologically significant, enhancement of Ca2+o-dependent suppression of PTH (parathyroid hormone) secretion. The impact of amino acids on CaR-stimulated ERK1/2, however, has not been determined. In the present study, we examined the effects of L-amino acids on Ca2+o-stimulated ERK1/2 phosphorylation as determined by Western blotting and a newly developed quantitative assay (SureFire). L-Amino acids induced a small, but significant, enhancement of Ca2+o-stimulated ERK1/2. In CaR-expressing HEK-293 cells, 10 mM L-phenylalanine lowered the EC50 for Ca2+o from approx. 2.3 to 2.0 mM in the Western blot assay and from 3.4 to 2.9 mM in the SureFire assay. The effect was stereoselective (L>D), and another aromatic amino acid, L-tryptophan, was also effective. The effects of amino acids were investigated further in HEK-293 cells that expressed the CaR mutant S169T. L-Phenylalanine normalized the EC50 for Ca2+o-stimulated Ca2+i mobilization from approx. 12 mM to 5.0 mM and ERK1/2 phosphorylation from approx. 4.6 mM to 2.6 mM. Taken together, the data indicate that L-phenylalanine and other amino acids enhance the Ca2+o-sensitivity of CaR-stimulated ERK1/2 phosphorylation; however, the effect is comparatively small and operates in the form of a fine-tuning mechanism.  相似文献   

2.
We previously demonstrated that the human calcium-sensing receptor (CaR) is allosterically activated by L-amino acids (Conigrave, A. D., Quinn, S. J., and Brown, E. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 4814-4819). However, the domain-based location of amino acid binding has been uncertain. We now show that the Venus Fly Trap (VFT) domain of CaR, but none of its other major domains, is required for amino acid sensing. Several constructs were informative when expressed in HEK293 cells. First, the wild-type CaR exhibited allosteric activation by L-amino acids as previously observed. Second, two CaR-mGlu chimeric receptor constructs that retained the VFT domain of CaR, one containing the extracellular Cys-rich region of CaR and the other containing the Cys-rich region of the rat metabotropic glutamate type-1 (mGlu-1) receptor, together with the rat mGlu-1 transmembrane region and C-terminal tail, retained amino acid sensing. Third, a CaR lacking residues 1-599 of the N-terminal extracellular head but retaining an intact CaR transmembrane region and a functional but truncated C terminus (headless-T903 CaR) failed to respond to L-amino acids but retained responsiveness to the type-II calcimimetic NPS R-467. Finally, a T903 CaR control that retained an intact N terminus also retained L-amino acid sensing. Taken together, the data indicate that the VFT domain of CaR is necessary for L-amino acid sensing and are consistent with the hypothesis that the VFT domain is the site of L-amino acid binding. The findings support the concept that the mGlu-1 amino acid binding site for L-glutamate is conserved as an L-amino acid binding site in its homolog, the CaR.  相似文献   

3.
Hira T  Nakajima S  Eto Y  Hara H 《The FEBS journal》2008,275(18):4620-4626
Intraluminal L-phenylalanine (Phe) stimulates cholecystokinin (CCK) secretion in vivo and in vitro. However, the cellular mechanism by which CCK-producing enteroendocrine cells sense Phe is unknown. The calcium-sensing receptor (CaR) can sense amino acids, and is expressed in the gastrointestinal tract. In the present study, we examined whether CaR functions as a receptor for Phe in CCK-producing enteroendocrine cells. CCK secretion and intracellular Ca2+ concentration in response to Phe were measured in the murine CCK-producing enteroendocrine cell line STC-1 at various extracellular Ca2+ concentrations or after treatment with a CaR antagonist. At more than 20 mm, Phe induced dose-dependent CCK secretion and intracellular Ca2+ mobilization in STC-1 cells. In the presence of 3.0 mm extracellular Ca2+, 10 and 20 mm Phe induced significantly higher CCK secretion than under normal conditions (1.2 mm extracellular Ca2+). Intracellular Ca2+ mobilization, induced by 10 or 20 mm Phe, was also enhanced by increasing extracellular Ca2+ concentrations. In addition, intracellular Ca2+ mobilization induced by addition of extracellular Ca2+ was augmented by the presence of Phe. These results closely match the known CaR properties. Treatment with a specific CaR antagonist (NPS2143) completely inhibited Phe-induced CCK secretion and the latter phase of intracellular Ca2+ mobilization. CaR mRNA expression was demonstrated by RT-PCR in STC-1 cells, as well as in other mouse tissues including the kidney, thyroid, stomach and intestine. In conclusion, CaR functions as a receptor for Phe, stimulating CCK secretion in enteroendocrine STC-1 cells.  相似文献   

4.
Hebert SC  Cheng S  Geibel J 《Cell calcium》2004,35(3):239-247
The gastrointestinal tract is vital to food digestion and nutrient absorption as well as normal salt and water homeostasis. Studies over the last several years have shown that the Ca2+-sensing receptor is expressed along the entire gastrointestinal tract. The potential roles for the receptor in gastrointestinal biology are now only beginning to be elucidated and much work remains. Well-studied physiological effects include regulation of gastric acid secretion and modulation of fluid transport in the colon. It remains to be determined if the Ca2+-sensing receptor is involved in calcium handling by the gastrointestinal tract. The ability of organic nutrient receptor agonists/allosteric modifiers, such as polyamines and L-amino acids, to activate the Ca2+-sensing receptor suggest potential roles in signalling nutrient availability to gastric and intestinal epithelial cells. In addition, polyamines are crucial for normal cell proliferation and differentiation required to sustain the rapid turnover of gastrointestinal epithelial cells and the Ca2+-sensing receptor may be involved in this function. Activation of the colonic Ca2+-sensing receptor can abrogate cyclic nucleotide-mediated fluid secretion suggesting a role for the receptor in modifying secretory diarrheas like cholera. Finally, the Ca2+-sensing receptor has been suggested to provide a mechanism for the effect of calcium intake in reducing the risk of colon cancer.  相似文献   

5.
Calcium sensing receptors as integrators of multiple metabolic signals   总被引:2,自引:0,他引:2  
Calcium sensing receptors are critical to maintenance of organismal Ca2+ homeostasis, translating small changes in serum Ca2+ into changes in PTH secretion by the parathyroid glands and Ca2+ excretion by the kidneys. Calcium sensing receptors are also expressed in many cells and tissues not directly involved in Ca2+ homeostasis where their role(s) are less defined. Recent studies have demonstrated that calcium sensing receptors integrate a variety of metabolic signals, including polyvalent cations, pH, ionic strength, amino acids, and polypeptides, making CaR uniquely capable of generating cell- and tissue-specific responses, sensing not only Ca2+, but the local metabolic environment. The challenge for future studies is to define CaR responsiveness in each varied physiological context.  相似文献   

6.
γ-Glutamyl peptides were identified previously as novel positive allosteric modulators of Ca(2+)(o)-dependent intracellular Ca(2+) mobilization in HEK-293 cells that bind in the calcium-sensing receptor VFT domain. In the current study, we investigated whether γ-glutamyl-tripeptides including γ-Glu-Cys-Gly (glutathione) and its analogs S-methylglutathione and S-propylglutathione, or dipeptides including γ-Glu-Ala and γ-Glu-Cys are positive allosteric modulators of Ca(2+)(o)-dependent Ca(2+)(i) mobilization and PTH secretion from normal human parathyroid cells as well as Ca(2+)(o)-dependent suppression of intracellular cAMP levels in calcium-sensing receptor (CaR)-expressing HEK-293 cells. In addition, we compared the effects of the potent γ-glutamyl peptide S-methylglutathione, and the amino acid L-Phe on HEK-293 cells that stably expressed either the wild-type CaR or the double mutant T145A/S170T, which exhibits selectively impaired responses to L-amino acids. We find that γ-glutamyl peptides are potent positive allosteric modulators of the CaR that promote Ca(2+)(o)-dependent Ca(2+)(i) mobilization, suppress intracellular cAMP levels and inhibit PTH secretion from normal human parathyroid cells. Furthermore, we find that the double mutant T145A/S170T exhibits markedly impaired Ca(2+)(i) mobilization and cAMP suppression responses to S-methylglutathione as well as L-Phe indicating that γ-glutamyl peptides and L-amino acids activate the CaR via a common mechanism.  相似文献   

7.
Riccardi D 《Cell calcium》1999,26(3-4):77-83
In mammals Ca2+ concentration in the extracellular fluids ([Ca2+]o) is essential for a number of vital processes varying from bone mineralization to blood coagulation, regulation of enzymatic processes, modulation of permeability and excitability of plasma membranes. For this reason [Ca2+]o is under strict control of a complex homeostatic system that includes parathyroid glands, kidneys, bones and intestine. The extracellular Ca(2+)-sensing receptor (CaR) is an essential component of this system, regulating parathyroid hormone secretion, calcium (and magnesium) excretion by the kidney, bone remodeling and Ca2+ reabsorption by the gastrointestinal tract. Structurally, the CaR is a novel member of a growing G protein-coupled receptor superfamily, which includes metabotropic glutamate receptors (mGluRs) [1], [gamma]-aminoisobutyric acid (GABA-B) receptors [2] and vomeronasal organ receptors [3]. Initially identified from bovine parathyroid glands [4], within the 5 years following its identification CaR presence has rapidly been identified as extending to organs where the link with mineral ion metabolism has not been elucidated (i.e. brain, stomach, eye, skin and many other epithelial cells) (see [5] for review). The role of the receptor in these regions is largely unknown, but it appears to be somewhat related to phenomena such as chemotaxis, cell proliferation and programmed cell death. This review will describe the discovery of a novel class of ion-sensing receptor(s), receptor-effector coupling and the roles of the CaR inside and outside the Ca2+o homeostatic system.  相似文献   

8.
The extracellular calcium-sensing receptor (CaSR) in fishes, like the CaSRs of tetrapod vertebrates, is a dimeric seven transmembrane, G protein-coupled receptor. The receptor is expressed on the plasma membranes of a variety of tissues and cells where it functions as a sensor of extracellular calcium concentration ([Ca(2+)](o)) in the physiological range. In the context of systemic calcium homeostasis, CaSR expressed in endocrine tissues that secrete calciotropic and other hormones (pituitary gland and corpuscles of Stannius) may play a central role in global integrative signaling, whereas receptor expressed in ion-transporting tissues (kidney, intestine, gills, and elasmobranch rectal gland) may have local direct effects on monovalent and divalent ion transport that are independent of endocrine signaling. In fishes, specifically, CaSR expression at the body surface (at the gills and olfactory tissues, for example) may permit direct sensing of environmental Ca(2+) and Mg(2+) concentrations, especially in the marine environment. Additionally, CaSRs may have other widespread and diverse roles in extracellular Ca(2+) sensing related both to organismal calcium homeostasis and to intercellular Ca(2+) signaling. As a consequence of the broad spectrum of recognized ligands, including polyvalent cations and amino acids, and of binding site shielding by monovalent cations, additional receptor functionalities related to salinity and nutrient detection are proposed for CaSRs. CaSR expression in the gastrointestinal tract may be multifunctional as a sensor for polyvalent cations and amino acids. Structural and phylogenetic analyses reveal strongly conserved features among CaSRs, and suggest that calcium sensing by mammalian parathyroid gland-type CaSR proteins may be restricted to chordates. Comparative functional and genomic studies that include piscine CaSRs can be useful model systems for testing existing hypotheses regarding receptor function, and will shed light on the evolutionary developmental history of calcium homeostasis in the vertebrates.  相似文献   

9.
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that displays 19-25% sequence identity to the gamma-aminobutyric acid type B (GABAB) and metabotropic glutamate (mGlu) receptors. All three groups of receptors have a large amino-terminal domain (ATD), which for the mGlu receptors has been shown to bind the endogenous agonist. To investigate whether the agonist-binding domain of the CaR also is located in the ATD, we constructed a chimeric receptor named Ca/1a consisting of the ATD of CaR and the seven transmembrane region and C terminus of mGlu1a. The Ca/1a receptor stimulated inositol phosphate production when exposed to the cationic agonists Ca2+, Mg2+, and Ba2+ in transiently transfected tsA cells (a transformed HEK 293 cell line). The pharmacological profile of Ca/1a (EC50 values of 3.3, 2.6, and 3.9 mM for these cations, respectively) was very similar to that of the wild-type CaR (EC50 values of 3.2, 4.7, and 4.1 mM, respectively). For the mGlu1a receptor, it has been shown that Ser-165 and Thr-188, which are located in the ATD, are involved in the agonist binding. An alignment of CaR with the mGlu receptors showed that these two amino acid residues have been conserved in CaR as Ser-147 and Ser-170, respectively. Each of these residues was mutated to alanines and tested pharmacologically using the endogenous agonist Ca2+. CaR-S147A showed an impaired function as compared with wild-type CaR both with respect to potency of Ca2+ (4-fold increase in EC50) and maximal response (79% of wild-type response). CaR-S170A showed no significant response to Ca2+ even at 50 mM concentration. In contrast, each of the two adjacent mutations, S169A and S171A, resulted in pharmacological profiles almost identical to that of the wild-type receptor. These data demonstrate that Ser-170 and to some extent Ser-147 are involved in the Ca2+ activation of the CaR, and taken together, our results reveal a close resemblance of the activation mechanism between the CaR and the mGlu receptors.  相似文献   

10.
The extracellular Ca(2+)-sensing receptor is activated allosterically by l-amino acids, and recent molecular analysis indicates that amino acids are likely to bind in the receptor's Venus flytrap domain. In the current study we set out to identify residues in the VFT domain that specifically support amino acid binding and/or amino acid-dependent receptor activation. Herein we describe two mutations of the Ca(2+)-sensing receptor (CaR) Venus Flytrap domain, T145A and S170T, that specifically impair amino acid sensing, leaving Ca2+ sensing intact, as determined by receptor-dependent activation of intracellular Ca2+ mobilization in fura-2-loaded HEK293 cells. With respect to the wild-type CaR, T145A and S170T exhibited reduced sensitivity to l-Phe, and T145A also exhibited markedly impaired l/d selectivity. When combined, the double mutant T145A/S170T exhibited normal or near-normal sensitivity to extracellular Ca2+ but was resistant to l-Phe at concentrations up to 100 mm. We conclude that T145A/S170T selectively disables l-amino acid sensing and that the Ca2+ and l-amino acid-sensing functions of the CaR can be dissociated.  相似文献   

11.
Parathyroid hormone (PTH) secretion is acutely regulated by the extracellular Ca(2+)-sensing receptor (CaR). Thus, Ca(2+) ions, and to a lesser extent Mg(2+) ions, have been viewed as the principal physiological regulators of PTH secretion. Herein we show that in physiological concentrations, l-amino acids acutely and reversibly activated the extracellular Ca(2+)-sensing receptor in normal human parathyroid cells and inhibited parathyroid hormone secretion. Individual l-amino acids, especially of the aromatic and aliphatic classes, as well as plasma-like amino acid mixtures, stereoselectively mobilized Ca(2+) ions in normal human parathyroid cells in the presence but not the absence of the CaR agonists, extracellular Ca(2+) (Ca(2+)(o)), or spermine. The order of potency was l-Trp = l-Phe > l-His > l-Ala > l-Glu > l-Arg = l-Leu. CaR-active amino acids also acutely and reversibly suppressed PTH secretion at physiological ionized Ca(2+) concentrations. At a Ca(2+)(o) of 1.1 mm and an amino acid concentration of 1 mm, CaR-active amino acids (l-Phe = l-Trp > l-His = l-Ala), but not CaR-inactive amino acids (l-Leu and l-Arg), stereoselectively suppressed PTH secretion by up to 40%, similar to the effect of raising Ca(2+)(o) to 1.2 mm. A physiologically relevant increase in the -fold concentration of the plasma-like amino acid mixture (from 1x to 2x) also reversibly suppressed PTH secretion in the Ca(2+)(o) concentration range 1.05-1.25 mm. In conclusion, l-amino acids acutely and reversibly activate endogenous CaRs and suppress PTH secretion at physiological concentrations. The results indicate that l-amino acids are physiological regulators of PTH secretion and thus whole body calcium metabolism.  相似文献   

12.
The calcium-sensing receptor (CaR) is activated by small changes in the ionic extracellular calcium concentration (Ca(o)) within the physiological range, allowing the parathyroid gland to regulate serum Ca(o); however, the CaR is also distributed in a number of other tissues where it may sense other endogenous agonists and modulators. CaR agonists are polycationic molecules, and our previous studies suggest that charged residues in the extracellular domain of the CaR are critical for receptor activation through electrostatic interactions. Therefore, pH could also potentially modulate CaR activation by its polycationic agonists. Changes in the concentration of extracellular H(+) substantially altered the activation of the CaR by Ca(o) and other CaR agonists. The effects of external pH on the CaR's sensitivity to its agonists were observed for both acidic and basic deviations from physiological pH of 7.4, with increases in pH rendering the receptor more sensitive to activation by Ca(o) and decreases in pH producing the converse effect. At pH values more acidic than 5.5, CaR sensitivity to its agonists showed some recovery. Changes in the intracellular pH could not account for the effects of external pH on CaR sensitivity to its agonists. Other G-protein-coupled receptors, which are endogenously expressed in human embryonic kidney 293 cells, showed little change in activity with alterations in external pH or effects opposite those found for the CaR. Extracellular pH directly alters the CaR in the case of Ca(o) and Mg(o) activation; however, the charges on many organic and inorganic agonists are pH-dependent. Activating CaR mutations show reduced pH(o) modulation, suggesting a molecular mechanism for increased CaR activity at physiological pH(o). Several CaR-expressing tissues, including regions of the stomach, the kidney, bone, and the brain, could potentially use the CaR as a sensor for pH and acid-base status.  相似文献   

13.
14.
The extracellular calcium-sensing receptor (CaSR) in fishes, like the CaSRs of tetrapod vertebrates, is a dimeric seven transmembrane, G protein-coupled receptor. The receptor is expressed on the plasma membranes of a variety of tissues and cells where it functions as a sensor of extracellular calcium concentration ([Ca(2+)](o)) in the physiological range. In the context of systemic calcium homeostasis, CaSR expressed in endocrine tissues that secrete calciotropic and other hormones (pituitary gland and corpuscles of Stannius) may play a central role in global integrative signaling, whereas receptor expressed in ion-transporting tissues (kidney, intestine, gills, and elasmobranch rectal gland) may have local direct effects on monovalent and divalent ion transport that are independent of endocrine signaling. In fishes, specifically, CaSR expression at the body surface (at the gills and olfactory tissues, for example) may permit direct sensing of environmental Ca(2+) and Mg(2+) concentrations, especially in the marine environment. Additionally, CaSRs may have other widespread and diverse roles in extracellular Ca(2+) sensing related both to organismal calcium homeostasis and to intercellular Ca(2+) signaling. As a consequence of the broad spectrum of recognized ligands, including polyvalent cations and amino acids, and of binding site shielding by monovalent cations, additional receptor functionalities related to salinity and nutrient detection are proposed for CaSRs. CaSR expression in the gastrointestinal tract may be multifunctional as a sensor for polyvalent cations and amino acids. Structural and phylogenetic analyses reveal strongly conserved features among CaSRs, and suggest that calcium sensing by mammalian parathyroid gland-type CaSR proteins may be restricted to chordates. Comparative functional and genomic studies that include piscine CaSRs can be useful model systems for testing existing hypotheses regarding receptor function, and will shed light on the evolutionary developmental history of calcium homeostasis in the vertebrates.  相似文献   

15.
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) is a key player in Ca(2+)(o) homeostasis. The activity of CaR can be potentiated by various l-amino acids. In this study, we examined whether conserved amino acid residues involved in the binding of glutamate to metabotropic glutamate receptors (mGluRs) also participate in the potentiation of the activity of CaR by l-phenylalanine. Ser-170 corresponding to Thr-188 in rat mGluR1a appears to be important for the modulating actions of phenylalanine. In the presence of phenylalanine, a mutant CaR with a single mutation S170A showed no significant decrease in its EC(50) for stimulation by Ca(2+)(o) and a modest increase in its maximal activity. In addition, mutating Ser-169 and Ser-171 together with Ser-170 yielded a more complete block of the phenylalanine modulation than did the single mutation. The presence of the triple mutation, S169A/S170A/S171A, also eliminated phenylalanine potentiation of the activities of heterodimeric receptors in which one of the monomeric receptors had intact triple serines (A877Stop). The putative amino acid binding site of the CaR is probably close to or structurally dependent on the Ca(2+)(o) binding sites of the receptor, because mutant CaRs with mutations in the putative amino acid binding site exhibited severely reduced responses to Ca(2+)(o).  相似文献   

16.
The extracellular calcium-sensing receptor (CaR) belongs to class III of G-protein coupled receptors. The CaR is expressed at the surface of the parathyroid cells and plays an essential role in the regulation of Ca2+ homeostasis through the control of parathyroid secretion. The CaR is activated by Ca2+ and Mg2+ present in the extracellular fluids, various di- and trivalent cations, L-aminoacids and charged molecules including several antibiotics. Calcimimetics potentiate the effect of Ca2+ and are proposed to be of therapeutic benefit for the treatment of both primary and secondary hyperparathyroidism. Calcilytics block the Ca2+-induced activation of the CaR. Three-dimensional models of the seven transmembrane domains of the human CaR have been used to identify specific residues implicated in the recognition of calcimimetics and calcilytics. These molecules should be useful for delineating the physiological roles played by the CaR in several tissues and for clarifying the direct effects attributed to extracellular Ca2+.  相似文献   

17.
Chang W  Shoback D 《Cell calcium》2004,35(3):183-196
Extracellular Ca2+-sensing receptors (CaRs) are the molecular basis by which specialized cells detect and respond to changes in the extracellular [Ca2+] ([Ca2+]o). CaRs belong to the family C of G-protein coupled receptors (GPCRs). Activation of CaRs triggers signaling pathways that modify numerous cell functions. Multiple ligands regulate the activation of CaRs including multivalent cations, L-amino acids, and changes in ionic strength and pH. CaRs in parathyroid cells play a central role in systemic Ca2+ homeostasis in terrestrial tetrapods. Mutations of the CaR gene in humans cause diseases in which serum and urine [Ca2+] and parathyroid hormone (PTH) levels are altered. CaR homologues are also expressed in organs critical to Ca2+ transport in ancient and modern fish, suggesting that similar receptors may have long been involved in Ca2+ homeostasis in lower vertebrates before parathyroid glands developed in terrestrial vertebrates. CaR mRNA and protein are also expressed in tissues not directly involved in Ca2+ homeostasis. This implies that there may be other biological roles for CaRs. Studies of CaR-knockout mice confirm the importance of CaRs in the parathyroid gland and kidney. The functions of CaRs in tissues other than kidney and parathyroid gland, however, remain to be elucidated.  相似文献   

18.
Rodland KD 《Cell calcium》2004,35(3):291-295
The extracellular calcium-sensing receptor (CaR) is a versatile sensor of small, polycationic molecules ranging from Ca2+ and Mg2+ through polyarginine, spermine, and neomycin. The sensitivity of the CaR to changes in extracellular Ca2+ over the range of 0.05-5 mM positions the CaR as a key mediator of cellular responses to physiologically relevant changes in extracellular Ca2+. For many cell types, including intestinal epithelial cells, breast epithelial cells, keratinocytes, and ovarian surface epithelial cells, changes in extracellular Ca2+ concentration over this range can switch the cellular behaviour from proliferation to terminal differentiation or quiescence. As cancer is predominantly a disease of disordered balance between proliferation, differentiation, and apoptosis, disruptions in the function of the CaR could contribute to the progression of neoplastic disease. Loss of the growth suppressing effects of elevated extracellular Ca2+ have been demonstrated in parathyroid hyperplasias and in colon carcinoma, and have been correlated with changes in the level of CaR expression. Activation of the CaR has also been linked to increased expression and secretion of PTHrP (parathyroid hormone-related peptide), a primary causal factor in hypercalcemia of malignancy and a contributor to metastatic processes involving bone. Although mutation of the CaR does not appear to be an early event in carcinogenesis, loss or upregulation of normal CaR function can contribute to several aspects of neoplastic progression, so that therapeutic strategies directed at the CaR could potentially serve a supportive function in cancer management.  相似文献   

19.
The extracellular calcium-sensing receptor (CaR) was first identified in tissues involved in systemic Ca2+ homeostasis, where it acts to sense changes in circulating Ca2+. It has since been reported that the CaR is expressed in many tissues that are not associated with Ca2+ homeostasis, including the endocrine cells in pancreatic islets of Langerhans. In the present study we have used an insulin-secreting pancreatic beta-cell line (MIN6) to investigate the expression and function of CaR, using the calcimimetic A568, a CaR agonist that activates the CaR at physiological concentrations of extracellular Ca2+ ([Ca2+]o). Immunocytochemistry, Western blotting and RT-PCR confirmed the expression of CaR in MIN6 cells. CaR activation was associated with rapid and transient increases in [Ca2+]o, which were accompanied by the initiation of a marked but transient insulin secretory response. Stimulation of beta-cell secretory activity had no detectable effect on CaR mRNA levels, but CaR mRNA was markedly reduced by configuring MIN6 cells into islet- like structures. Our data are consistent with an important function for the beta-cell CaR in cell - cell communication within islets to co-ordinate insulin secretory responses.  相似文献   

20.
Activation of the calcium sensing receptor (CaR) by small increments in extracellular calcium (Ca(2+)(e)) induces intracellular calcium (Ca(2+)(i)) oscillations that are dependent on thapsigargin-sensitive intracellular calcium stores. Phenylalkylamines such as NPS R-568 are allosteric modulators (calcimimetics) that activate CaR by increasing the apparent affinity of the receptor for calcium. We determined, by fluorescence imaging with fura-2, whether the calcimimetic NPS R-568 could activate Ca(2+)(i) oscillations in HEK-293 cells expressing human CaR. NPS R-568 was more potent than Ca(2+)(e) at eliciting Ca(2+)(i) oscillations, particularly at low [Ca(2+)](e) (as low as 0.1 mm). The oscillation frequencies elicited by NPS R-568 varied over a 2-fold range from peak to peak intervals of 60-70 to 30-45 s, depending upon the concentrations of both Ca(2+)(e) and NPS R-568. Finally, NPS R-568 induced sustained (>15 min after drug removal) Ca(2+)(i) oscillations, suggesting slow release of the drug from its binding site. We exploited the potency of NPS R-568 for eliciting Ca(2+)(i) oscillations for structural studies. Truncation of the CaR carboxyl terminus from 1077 to 886 amino acids had no effect on the ability of Ca(2+) or NPS R-568 to induce Ca(2+)(i) oscillations, but further truncation (to 868 amino acids) eliminated both highly cooperative Ca(2+)-dependent activation and regular Ca(2+)(i) oscillations. Alanine scanning within the amino acid sequence from Arg(873) to His(879) reveals a linkage between the cooperativity for Ca(2+)-dependent activation and establishment and maintenance of intracellular Ca(2+) oscillations. The amino acid residues critical to both functions of CaR may contribute to interactions with either G proteins or between CaR monomers within the functional dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号