首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Messenger RNA polyadenylation is one of the processes that control gene expression in all eukaryotic cells and tissues. In mice, two forms of the regulatory polyadenylation protein CstF-64 are found. The gene Cstf2 on the X chromosome encodes this form, and it is expressed in all somatic tissues. The second form, tauCstF-64 (encoded by the autosomal gene Cstf2t), is expressed in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells and, to a smaller extent, in brain. We report here that whereas CstF-64 and tauCstF-64 expression in rat tissues resembles their expression in mouse tissues, significant differences also are found. First, unlike in mice, in which CstF-64 was expressed in postmeiotic round and elongating spermatids, rat CstF-64 was absent in those cell types. Second, unlike in mice, tauCstF-64 was expressed at significant levels in rat liver. These differences in expression suggest interesting differences in X-chromosomal gene expression between these two rodent species.  相似文献   

2.
3.
Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.  相似文献   

4.
Messenger RNA polyadenylation in male germ cells does not seem to require the AAUAAA polyadenylation signal required in all other cell types. To account for this difference, we found a variant form of the polyadenylation protein, the 64,000 Mr protein of the cleavage stimulation factor (CstF-64), in mouse meiotic and postmeiotic germ cells. This protein is a candidate to alter polyadenylation in those cells. More recently, we reported the cloning from mouse pachytene spermatocytes of mouse tauCstF-64 (gene symbol Cstf2t), which is a homolog of CstF-64 fitting the criteria we expected for the variant CstF-64 protein. Here we report the cloning and mapping of the human ortholog of mouse tauCstF-64. The human tauCstF-64 cDNA (gene symbol CSTF2T) is 2324 bp in length and encodes a protein of 616 amino acids (64,442.90 Da). Although most highly related to mouse tauCstF-64 (89.8% identity), human tauCstF-64 is also related to the human and mouse somatic CstF-64 (74.9% and 73.4% identity, respectively). Alignment of human tauCstF-64 with human genome sequence from chromosome 10 shows that CSTF2T lacks introns. Radiation hybrid mapping places the human tauCstF-64 gene at 10q22-q23, which is the site of a translocation that has been associated with human neurological problems and male infertility.  相似文献   

5.
6.
7.
The effects of methoxy-substitution at the 1-, 2-, 3-, and 4-positions of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on h5-HT(2A) receptor affinity were determined. Racemic mixtures of these compounds were found to show the following affinity trend: 3-MeO > 4-MeO > 1-MeO approximately 2-MeO. Comparison of the effects of these substitutions, with the aid of computational molecular modeling techniques, suggest that the various positional and stereochemical isomers of the methoxy-substituted AMDA compounds interact differently with the h5-HT(2A) receptor. It is predicted that for the compounds with higher affinities, the methoxy oxygen atom is able to interact with hydrogen bond-donating sidechains within alternative h5-HT(2A) receptor binding sites, whereas the lower-affinity isomers lack this ability.  相似文献   

8.
9.
The ability of short RNAs (21-27 nucleotides) to silence genes containing homologous nucleotide sequences is related to RNA silencing. The pathways of short RNAs (siRNA and microRNA) biogenesis from their precursors, double stranded and hairpin RNAs respectively, are briefly reviewed. The functioning of specific RNA binding domains found for the first time in the proteins operating in RNA interference (RNAi) is considered. The interactions of these domains with the earlier well known RNA binding modules in RNAi proteins are described.  相似文献   

10.
11.
The Drosophila inhibitor of apoptosis protein DIAP1 ensures cell viability by directly inhibiting caspases. In cells destined to die this IAP-mediated inhibition of caspases is overcome by IAP-antagonists. Genetic evidence indicates that IAP-antagonists are non-equivalent and function synergistically to promote apoptosis. Here we provide biochemical evidence for the non-equivalent mode of action of Reaper, Grim, Hid and Jafrac2. We find that these IAP-antagonists display differential and selective binding to specific DIAP1 BIR domains. Consistently, we show that each DIAP1 BIR region associates with distinct caspases. The differential DIAP1 BIR interaction seen both between initiator and effector caspases and within IAP-antagonist family members suggests that different IAP-antagonists inhibit distinct caspases from interacting with DIAP1. Surprisingly, we also find that the caspase-binding residues of XIAP predicted to be strictly conserved in caspase-binding IAPs, are absent in DIAP1. In contrast to XIAP, residues C-terminal to the DIAP1 BIR1 domain are indispensable for caspase association. Our studies on DIAP1 and caspases expose significant differences between DIAP1 and XIAP suggesting that DIAP1 and XIAP inhibit caspases in different ways.  相似文献   

12.
We have successfully developed a new strategy for RNA ligand design, which applies the antisense concept to enhance and make more specific loop region interactions while at the same time preserving stem region anchoring. The heteroconjugates, prepared in this effort, have proven to be the most specific small molecule ligands against RRE RNA that have been uncovered to date.  相似文献   

13.
14.
15.
Double-stranded (ds) RNA is a key player in numerous biological activities in cells, including RNA interference, anti-viral immunity and mRNA transport. The class of proteins responsible for recognizing dsRNA is termed double-stranded RNA binding proteins (dsRBP). However, little is known about the molecular mechanisms underlying the interaction between dsRBPs and dsRNA. Here we examined four human dsRBPs, ADAD2, TRBP, Staufen 1 and ADAR1 on six dsRNA substrates that vary in length and secondary structure. We combined single molecule pull-down (SiMPull), single molecule protein-induced fluorescence enhancement (smPIFE) and molecular dynamics (MD) simulations to investigate the dsRNA-dsRBP interactions. Our results demonstrate that despite the highly conserved dsRNA binding domains, the dsRBPs exhibit diverse substrate specificities and dynamic properties when in contact with different RNA substrates. While TRBP and ADAR1 have a preference for binding simple duplex RNA, ADAD2 and Staufen1 display higher affinity to highly structured RNA substrates. Upon interaction with RNA substrates, TRBP and Staufen1 exhibit dynamic sliding whereas two deaminases ADAR1 and ADAD2 mostly remain immobile when bound. MD simulations provide a detailed atomic interaction map that is largely consistent with the affinity differences observed experimentally. Collectively, our study highlights the diverse nature of substrate specificity and mobility exhibited by dsRBPs that may be critical for their cellular function.  相似文献   

16.
RNA binding strategies of ribosomal proteins.   总被引:5,自引:0,他引:5       下载免费PDF全文
Structures of a number of ribosomal proteins have now been determined by crystallography and NMR, though the complete structure of a ribosomal protein-rRNA complex has yet to be solved. However, some ribosomal protein structures show strong similarity to well-known families of DNA or RNA binding proteins for which structures in complex with cognate nucleic acids are available. Comparison of the known nucleic acid binding mechanisms of these non-ribosomal proteins with the most highly conserved surfaces of similar ribosomal proteins suggests ways in which the ribosomal proteins may be binding RNA. Three binding motifs, found in four ribosomal proteins so far, are considered here: homeodomain-like alpha-helical proteins (L11), OB fold proteins (S1 and S17) and RNP consensus proteins (S6). These comparisons suggest that ribosomal proteins combine a small number of fundamental strategies to develop highly specific RNA recognition sites.  相似文献   

17.
Weibel-Palade bodies, the secretory granules of endothelial cells, possess two different membrane proteins. However, P-selectin is seen only in Weibel-Palade bodies in HUVECs, whereas CD63 is also seen in late endosomes/lysosomes. Since P-selectin is targeted to lysosomes in heterologous expression studies, we have determined whether a lysosomal targeting signal also operates within HUVECs. We have also examined the trafficking of CD63 to its two different intracellular locations. By following antibodies bound at the plasma membrane during stimulation, we have discovered that while half of the P-selectin recycles to the WPBs, 50% is rapidly delivered to a lamp-1-positive compartment. Thus, the lysosomal targeting signal of this protein also operates in HUVECs. CD63 is found constitutively at the cell surface of HUVECs and most of it is delivered to the late endosomes/lysosomes after internalisation. However, stimulation causes both a rise in the CD63 plasma membrane level and in the amount that recycles to the WPBs. Our data strongly suggest that the CD63 that originates in the WPB preferentially recycles to the granule rather than being delivered to the late endosome/lysosome, and that there are, therefore, two separate pools of this protein within HUVECs. Our findings indicate that although P-selectin and CD63 are both targeted to the same compartments from the PM, the kinetics and the ratio of their targeting to Weibel-Palade bodies versus lysosomes are very different.  相似文献   

18.
Glycosyl hydrolase (GH) family 18 chitinases (Chi) and family 33 chitin binding proteins (CBPs) from Bacillus thuringiensis serovar kurstaki (BtChi and BtCBP), B. licheniformis DSM13 (BliChi and BliCBP) and Serratia proteamaculans 568 (SpChiB and SpCBP21) were used to study the efficiency and synergistic action of BtChi, BliChi and SpChiB individually with BtCBP, BliCBP or SpCBP21. Chitinase assay revealed that only BtChi and SpChiB showed synergism in hydrolysis of chitin, while there was no increase in products generated by BliChi, in the presence of the three above mentioned CBPs. This suggests that some (specific) CBPs are able to exert a synergistic effect on (specific) chitinases. A mutant of BliChi, designated as BliGH, was constructed by deleting the C-terminal fibronectin III (FnIII) and carbohydrate binding module 5 (CBM5) to assess the contribution of FnIII and CBM5 domains in the synergistic interactions of GH18 chitinases with CBPs. Chitinase assay with BliGH revealed that the accessory domains play a major role in making BliChi an efficient enzyme. We studied binding of BtCBP and BliCBP to α- and β-chitin. The BtCBP, BliCBP or SpCBP21 did not act synergistically with chitinases in hydrolysis of the chitin, interspersed with other polymers, present in fungal cell walls.  相似文献   

19.
RNA binding proteins (RBPs) are a large and diverse class of proteins that regulate all aspects of RNA biology. As RBP dysregulation has been implicated in a number of human disorders, including cancers and neurodegenerative disease, small molecule chemical probes that target individual RBPs represent useful tools for deciphering RBP function and guiding the production of new therapeutics. While RBPs are often thought of as tough-to-drug, the discovery of a number of small molecules that target RBPs has spurred considerable recent interest in new strategies for RBP chemical probe discovery. Here we review current and emerging technologies for high throughput RBP-small molecule screening that we expect will help unlock the full therapeutic potential of this exciting protein class.  相似文献   

20.
It was previously revealed [Yamaguchi, H., Nishiyama, T., and Uchida, M. (1999) J. Biochem. 126, 261-265] that N-glycans of both the high-mannose and complex types have binding affinity for aromatic amino acid residues. This study shows that free N-glycans protect proteins from protease digestion through their binding affinities for the aromatic amino acid residues exposed on protein molecules. Protease digestion of bovine pancreatic RNase A and bovine a-lactalbumin was depressed in solutions (1 mM or so) of free N-glycans of both the high-mannose and complex types. The increasing order of the protective effects of the N-glycans paralleled that of their affinities for aromatic amino acid residues; and the presence of aromatic amino acids practically abolished the protective effects of the N-glycans. The N-glycans also depressed the protease digestion of metallothionein, an aromatic amino acid-free protein, in agreement with the observation that the N-glycans also interact with the solvent-exposed aromatic amino acid residues of the proteases. Thus it seems probable that the N-glycans protect proteins from protease digestion by steric hindrance attributable to their binding affinity for the solvent-exposed aromatic amino acid residues of both substrate proteins and proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号