首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor γ2 (PPARγ2), and CCAT/enhancer-binding protein α (C/EBPα). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARγ2, and C/EBPα in the visceral fat tissue of mice.  相似文献   

3.
4.
5.
Objective: The ability to form new adipose cells is important to adipose tissue physiology; however, the mechanisms controlling the recruitment of adipocyte progenitors are poorly understood. A role for locally generated angiotensin II in this process is currently proposed. Given that visceral adipose tissue reportedly expresses higher levels of angiotensinogen compared with other depots and the strong association of augmented visceral fat mass with the adverse consequences of obesity, we studied the role of angiotensin II in regulating adipogenic differentiation in omental fat of obese and non‐obese humans. Research Methods and Procedures: The angiotensin II effect on adipose cell formation was evaluated in human omental adipocyte progenitor cells that were stimulated to adipogenic differentiation in vitro. The adipogenic response was measured by the activity of the differentiation marker glycerol‐3‐phosphate dehydrogenase. Results: Angiotensin II reduced the adipogenic response of adipocyte progenitor cells, and the extent of the decrease correlated directly with the subjects’ BMI (p = 0.01, R2 = 0.30). A 56.3 ± 3.4% and 44.5 ± 2.7% reduction of adipogenesis was found in obese and non‐obese donors’ cells, respectively (p < 0.01). The effect of angiotensin II was reversed by type 1 angiotensin receptor antagonist losartan. Discussion: A greater anti‐adipogenic response to angiotensin II in omental adipose progenitor cells from obese subjects opens a venue to understand the deregulation of visceral fat tissue cellularity that has been associated with severe functional abnormalities of the obese condition.  相似文献   

6.
7.
Adipocyte dysfunction is strongly associated with the development of obesity, which is a major risk factor for many disorders, including diabetes, hypertension, and heart disease. This study shows that ultraviolet A (UVA) inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells and its action mechanisms. The mRNA levels of peroxidase proliferator-activated receptor (PPAR) γ and CCAAT/enhancer-binding protein α (C/EBPα), but not CCAAT/enhancer-binding protein ((C/EBP) β and δ, were reduced by UVA. Moreover, the mRNA levels of PPAR γ target genes (lipoprotein lipase (LPL), CD36, adipocyte protein (aP2), and liver X receptor α (LXR)) were down-regulated by UVA. Additionally, attempts to elucidate a possible mechanism underlying the UVA-mediated effects revealed that UVA induced migration inhibitory factor (MIF) gene expression, and this was mediated through activation of AP-1 (especially JNK and p42/44 MAPK) and nuclear factor-κB. In addition, reduced adipogenesis by UVA was recovered upon the treatment with anti-MIF antibodies. AMP-activated protein kinase phosphorylation and up-regulation of Kruppel-like factor 2 (KLF2) were induced by UVA. Taken together, these findings suggest that the inhibition of adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by UVA occurs primarily through the reduced expression of PPAR γ, which is mediated by up-regulation of KLF2 via the activation of MIF-AMP-activated protein kinase signaling.  相似文献   

8.
Rodent and in vitro studies suggest that thiazolidinediones promote adipogenesis but there are few studies in humans to corroborate these findings. The purpose of this study was to determine whether pioglitazone stimulates adipogenesis in vivo and whether this process relates to improved insulin sensitivity. To test this hypothesis, 12 overweight/obese nondiabetic, insulin‐resistant individuals underwent biopsy of abdominal subcutaneous adipose tissue at baseline and after 12 weeks of pioglitazone treatment. Cell size distribution was determined via the Multisizer technique. Insulin sensitivity was quantified at baseline and postpioglitazone by the modified insulin suppression test. Regional fat depots were quantified by computed tomography (CT). Insulin resistance (steady‐state plasma insulin and glucose (SSPG)) decreased following pioglitazone (P < 0.001). There was an increase in the ratio of small‐to‐large cells (1.16 ± 0.44 vs. 1.52 ± 0.66, P = 0.03), as well as a 25% increase in the absolute number of small cells (P = 0.03). The distribution of large cell diameters widened (P = 0.009), but diameter did not increase in the case of small cells. The increase in proportion of small cells was associated with the degree to which insulin resistance improved (r = ?0.72, P = 0.012). Visceral abdominal fat decreased (P = 0.04), and subcutaneous abdominal (P = 0.03) and femoral fat (P = 0.004) increased significantly. Changes in fat volume were not associated with SSPG change. These findings demonstrate a clear effect of pioglitazone on human subcutaneous adipose cells, suggestive of adipogenesis in abdominal subcutaneous adipose tissue, as well as redistribution of fat from visceral to subcutaneous depots, highlighting a potential mechanism of action for thiazolidinediones. These findings support the hypothesis that defects in subcutaneous fat storage may underlie obesity‐associated insulin resistance.  相似文献   

9.
Objective: To determine whether serum adiponectin is decreased in obesity and is restored toward normal level after treatment in children. Research Methods and Procedures: Subjects were 53 Japanese obese children, 33 boys and 20 girls (6 to 14 years old), and 30 age‐matched nonobese controls for measuring adiponectin (16 boys and 14 girls). Blood was drawn after an overnight fast, and the obese children were subjected to anthropometric measurements including waist and hip circumferences and skinfold thicknesses. Paired samples were obtained from 21 obese children who underwent psychoeducational therapy. Visceral adipose tissue area was measured by computed tomography. Adiponectin was assayed by an enzyme‐linked immunosorbent assay. Results: The serum levels of alanine aminotransferase, uric acid, triglyceride, total cholesterol, low‐density lipoprotein‐cholesterol, total cholesterol/high‐density lipoprotein‐cholesterol, apo B, apo B/apo A1, and insulin in obese children were higher than the reference values. Serum adiponectin level was lower in the obese children than in the controls (6.4 ± 0.6 vs. 10.2 ± 0.8 mg/L, means ± SEM, p < 0.001). In 21 obese children whose percent overweight declined during therapy, the adiponectin level increased (p = 0.002). The adiponectin level was correlated inversely with visceral adipose tissue area in obese children (r = ?0.531, p < 0.001). The inverse correlations of adiponectin with alanine aminotransferase, uric acid, and insulin were significant after being adjusted for percentage overweight, percentage body fat, or sex. Discussion: Serum adiponectin level is decreased in obese children depending on the accumulation of visceral fat and is restored toward normal level by slimming.  相似文献   

10.
The objective of the study was to examine the association between a functional 4 bp proinsulin gene insertion polymorphism (IVS‐69), fasting insulin concentrations, and body composition in black South African women. Body composition, body fat distribution, fasting glucose and insulin concentrations, and IVS‐69 genotype were measured in 115 normal‐weight (BMI <25 kg/m2) and 138 obese (BMI ≥30 kg/m2) premenopausal women. The frequency of the insertion allele was significantly higher in the class 2 obese (BMI ≥35kg/m2) compared with the normal‐weight group (P = 0.029). Obese subjects with the insertion allele had greater fat mass (42.3 ± 0.9 vs. 38.9 ± 0.9 kg, P = 0.034) and fat‐free soft tissue mass (47.4 ± 0.6 vs. 45.1 ± 0.6 kg, P = 0.014), and more abdominal subcutaneous adipose tissue (SAT, 595 ± 17 vs. 531 ± 17 cm2, P = 0.025) but not visceral fat (P = 0.739), than obese homozygotes for the wild‐type allele. Only SAT was greater in normal‐weight subjects with the insertion allele (P = 0.048). There were no differences in fasting insulin or glucose levels between subjects with the insertion allele or homozygotes for the wild‐type allele in the normal‐weight or obese groups. In conclusion, the 4 bp proinsulin gene insertion allele is associated with extreme obesity, reflected by greater fat‐free soft tissue mass and fat mass, particularly SAT, in obese black South African women.  相似文献   

11.
12.
It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38‐deficient mice were resistant to high‐fat diet (HFD)‐induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38?/? and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38?/? mice, 3T3‐L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD‐fed mice or the MEFs, 3T3‐L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38?/? male mice were significantly resistant to HFD‐induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3‐L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD‐fed CD38?/? mice and CD38?/? MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38?/? MEFs. Finally, the CD38 deficiency‐mediated activations of Sirt1 signalling were up‐regulated or down‐regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ‐FASN signalling pathway during the development of obesity.  相似文献   

13.
Objective: We investigated subcutaneous adipose tissue expression of FOXC2 and selected genes involved in brown adipogenesis in adult human subjects in whom we have previously identified a reduced potential of precursor cell commitment to adipose‐lineage differentiation in relation to insulin resistance. Research Methods and Procedure: Gene expression was studied using quantitative real time polymerase chain reaction. The relation between the expression of brown adipogenic genes and the genes involved in progenitor cell commitment, adipose cell size, and insulin sensitivity in vivo was analyzed. Results: The expression of FOXC2, MASK, MAP3K5, retinoblastoma protein (pRb), peroxisome proliferator‐activated protein gamma (PPARγ), and retinoid X receptor gamma (RXRγ) was decreased in the insulin‐resistant compared with insulin‐sensitive subjects, whereas PPARγ‐2 and CCAAT/enhancer binding protein alpha (C/EBPα) showed no differential expression. The FOXC2 expression correlated with that of Notch and Wnt signaling genes, as well as of the genes studied participating in brown adipogenesis, including MASK, MAP3K5, PPARγ, pRb, RXRγ, and PGC‐1. A second‐level correlation between PPARγ and UCP‐1 was also significant. In addition, the expression of MASK, MAP3K5, pRb, RXRγ, and PGC‐1 inversely correlated with adipose cell mass and also correlated with the glucose disposal rate in vivo. Discussion: Our results suggest that a reduced brown adipose phenotype is associated with insulin resistance and that a basal brown adipose phenotype may be important for maintaining normal insulin sensitivity.  相似文献   

14.
15.
16.
Objective: Adipose tissue secretes several molecules that may participate in metabolic cross‐talk to other insulin‐sensitive tissues. Thus, adipose tissue is a key endocrine organ that regulates insulin sensitivity in other peripheral insulin target tissues. We have studied the expression and acute insulin regulation of novel genes expressed in adipose tissue that are implicated in the control of whole body insulin sensitivity. Research Methods and Procedures: Expression of adiponectin, c‐Cbl—associated protein (CAP), 11‐β hydroxysteroid dehydrogenase type 1 (11β‐HSD‐1), and sterol regulatory element binding protein (SREBP)‐1c was determined in subcutaneous adipose tissue from type 2 diabetic and age‐ and BMI‐matched healthy men by real‐time polymerase chain reaction analysis. Results: Expression of adiponectin, CAP, 11β‐HSD‐1, and SREBP‐1c was similar between healthy and type 2 diabetic subjects. Insulin infusion for 3 hours did not affect expression of CAP, 11β‐HSD‐1, or adiponectin mRNA in either group. However, insulin infusion increased SREBP‐1c expression by 80% in healthy, but not in type 2 diabetic, subjects. Discussion: Our results provide evidence that insulin action on SREBP‐1c is dysregulated in adipose tissue from type 2 diabetic subjects. Impaired insulin regulation on gene expression of select targets in adipose tissue may contribute to the pathogenesis of type 2 diabetes.  相似文献   

17.
18.
Objective: To investigate the relationships between visceral obesity and hepatic steatosis in obese patients undergoing adjustable silicone gastric banding with the LAP‐BAND. Research Methods and Procedures: Six premenopausal, morbidly obese women with an ultrasonographic diagnosis of liver steatosis were evaluated before surgery and 8 and 24 weeks after surgery. Liver volume and body fat distribution were simultaneously analyzed by total‐body multislices magnetic resonance imaging. Results: Before surgery, the only variable found to be correlated with liver volume was visceral adipose tissue volume (r = 0.91; p < 0.01). Weight loss was 9.9 ± 3.8 kg in the period from 0 to 8 weeks (p < 0.01) and 7.1 ± 4.9 kg in the the period from 8 to 24 weeks (p < 0.05). Total fat showed a statistically significant reduction of 6.2 ± 4.0 liters in the 0‐ to 8‐week period and a further significant reduction of 7.7 ± 3.9 liters in the 8‐ to 24‐week period. Visceral adipose tissue showed a statistically significant reduction of 1.0 ± 0.9 liters in the 0‐ to 8‐week period (p < 0.05) but only a further, not significant reduction of 0.6 ± 0.7 liters in the 8‐ to 24‐week period. The relative reduction of visceral fat in the 0‐to 8‐week period was higher than the relative reduction of total fat. Liver volume also showed a statistically significant reduction of 0.24 ± 0.26 liters in the first phase of weight loss (p < 0.05), corresponding to a relative reduction of 12.3 ± 10.6%. During the 8‐ to 24‐week period, liver volume was substantially stable. Discussion: Hepatomegaly was associated with visceral obesity in morbidly obese women with liver steatosis. In the phase of rapid weight loss after gastric surgery, a preferential mobilization of visceral fat, compared with total adipose tissue, occurred. This preferential visceral fat loss was associated with a significant reduction in liver volume.  相似文献   

19.
Because the potential of yerba maté (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba maté extract on weight loss, obesity‐related biochemical parameters, and the regulation of adipose tissue gene expression in high‐fat diet–induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high‐fat diets. After 12 weeks on a high‐fat diet, mice were randomly assigned according to the treatment (water or yerba maté extract 1.0 g/kg). After treatment intervention, plasma concentrations of total cholesterol, high‐density lipoprotein cholesterol, triglyceride, low‐density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor‐α (TNF‐α), leptin, interleukin‐6 (IL‐6), C‐C motif chemokine ligand‐2 (CCL2), CCL receptor‐2 (CCR2), angiotensinogen, plasminogen activator inhibitor‐1 (PAI‐1), adiponectin, resistin, peroxisome proliferator‐activated receptor‐γ2 (PPAR‐γ2), uncoupling protein‐1 (UCP1), and PPAR‐γ coactivator‐1α (PGC‐1α). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba maté exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat‐pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high‐fat diet. After treatment with yerba maté extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba maté extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号