首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of apical Na(+)-dependent H(+) extrusion in colonic crypts is controversial. With the use of confocal microscopy of the living mouse distal colon loaded with BCECF or SNARF-5F (fluorescent pH sensors), measurements of intracellular pH (pH(i)) in epithelial cells at either the crypt base or colonic surface were reported. After cellular acidification, the addition of luminal Na(+) stimulated similar rates of pH(i) recovery in cells at the base of distal colonic crypts of wild-type or Na(+)/H(+) exchanger isoform 2 (NHE2)-null mice. In wild-type crypts, 20 microM HOE694 (NHE2 inhibitor) blocked 68-75% of the pH(i) recovery rate, whereas NHE2-null crypts were insensitive to HOE694, the NHE3-specific inhibitor S-1611 (20 microM), or the bicarbonate transport inhibitor 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS; 1 mM). A general NHE inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA; 20 microM), inhibited pH(i) recovery in NHE2-null mice (46%) but less strongly than in wild-type mice (74%), suggesting both EIPA-sensitive and -insensitive compensatory mechanisms. Transepithelial Na(+) leakage followed by activation of basolateral NHE1 could confound the outcomes; however, the rates of Na(+)-dependent pH(i) recovery were independent of transepithelial leakiness to lucifer yellow and were unchanged in NHE1-null mice. NHE2 was immunolocalized on apical membranes of wild-type crypts but not NHE2-null tissue. NHE3 immunoreactivity was near the colonic surface but not at the crypt base in NHE2-null mice. Colonic surface cells from wild-type mice demonstrated S1611- and HOE694-sensitive pH(i) recovery in response to luminal sodium, confirming a functional role for both NHE3 and NHE2 at this site. We conclude that constitutive absence of NHE2 results in a compensatory increase in a Na(+)-dependent, EIPA-sensitive acid extruder distinct from NHE1, NHE3, or SITS-sensitive transporters.  相似文献   

2.
Noël J  Germain D  Vadnais J 《Biochemistry》2003,42(51):15361-15368
A NHE1 variant that exhibits very high resistance to (3-methyl sulfonyl-4-piperidinobenzoyl) guanidine methane sulfonate (HOE694), a potent inhibitor of Na(+)-H(+) exchangers, was selected and characterized. Sequencing of the coding region corresponding to the N-terminal domain of this variant revealed the presence of only one mutation located within membrane-spanning segment 9 (M9). This base pair change replaces a glutamate (Glu) with an aspartate (Asp). We reproduced this amino acid change in wild-type NHE1 and found that this mutation alone is responsible for the huge decrease in sensitivity to the HOE694 compound and to ethylisopropylamiloride (EIPA). We found that the NHE1-Glu(346)Asp mutant was more than 2000-fold more resistant to HOE694 and up to 300-fold more resistant to EIPA than wild-type NHE1, with the size, rather than the charge, of the amino acid in position 346 having the greatest effect. Interestingly, its affinity for Na(+) was at least 4-fold lower than that of wild-type NHE1. Mutation of amino acids in the vicinity of Glu(346) did not change the sensitivity of mutated NHE1 proteins to inhibitors. We suggest there is a direct interaction of Glu(346) or involvement of Glu(346) in a coordination site with NHE inhibitors and with Na(+).  相似文献   

3.
We previously presented evidence that transmembrane domain (TM) IV and TM X-XI are important for inhibitor binding and ion transport by the human Na(+)/H(+) exchanger, hNHE1 (Pedersen, S. F., King, S. A., Nygaard, E. B., Rigor, R. R., and Cala, P. M. (2007) J. Biol. Chem. 282, 19716-19727). Here, we present a structural model of the transmembrane part of hNHE1 that further supports this conclusion. The hNHE1 model was based on the crystal structure of the Escherichia coli Na(+)/H(+) antiporter, NhaA, and previous cysteine scanning accessibility studies of hNHE1 and was validated by EPR spectroscopy of spin labels in TM IV and TM XI, as well as by functional analysis of hNHE1 mutants. Removal of all endogenous cysteines in hNHE1, introduction of the mutations A173C (TM IV) and/or I461C (TM XI), and expression of the constructs in mammalian cells resulted in functional hNHE1 proteins. The distance between these spin labels was ~15 A, confirming that TM IV and TM XI are in close proximity. This distance was decreased both at pH 5.1 and in the presence of the NHE1 inhibitor cariporide. A similar TM IV·TM XI distance and a similar change upon a pH shift were found for the cariporide-insensitive Pleuronectes americanus (pa) NHE1; however, in paNHE1, cariporide had no effect on TM IV·TM XI distance. The central role of the TM IV·TM XI arrangement was confirmed by the partial loss of function upon mutation of Arg(425), which the model predicts stabilizes this arrangement. The data are consistent with a role for TM IV and TM XI rearrangements coincident with ion translocation and inhibitor binding by hNHE1.  相似文献   

4.
The cDNAencoding theNa+/H+exchanger (NHE) from Amphiumaerythrocytes was cloned, sequenced, and found to be highly homologous to the human NHE1 isoform (hNHE1), with 79% identity and 89%similarity at the amino acid level. Sequence comparisons with otherNHEs indicate that the Amphiumatridactylum NHE isoform 1 (atNHE1) islikely to be a phylogenetic progenitor of mammalian NHE1. The atNHE1protein, when stably transfected into the NHE-deficient AP-1 cell line(37), demonstrates robustNa+-dependent proton transportthat is sensitive to amiloride but not to the potent NHE1 inhibitorHOE-694. Interestingly, chimeric NHE proteins constructed by exchangingthe amino and carboxy termini between atNHE1 and hNHE1 exhibited drugsensitivities similar to atNHE1. Based on kinetic, sequence, andfunctional similarities between atNHE1 and mammalian NHE1, we proposethat the Amphiuma exchanger shouldprove to be a valuable model for studying the control of pH and volumeregulation of mammalian NHE1. However, low sensitivity of atNHE1 to theNHE inhibitor HOE-694 in both nativeAmphiuma red blood cells (RBCs) and intransfected mammalian cells distinguishes this transporter from itsmammalian homologue.  相似文献   

5.
Bicarbonate and butyrate stimulate electroneutral Na absorption via apical membrane Na-H exchange (NHE) in rat distal colon. cAMP downregulates NHE-3 isoform and inhibits HCO3-dependent, but not butyrate-dependent, Na absorption. This study sought to determine whether 1) the apical membrane NHE-2 and NHE-3 isoforms differentially mediated HCO3- and butyrate-dependent Na absorption, and 2) cAMP had different effects on NHE-2 and NHE-3 isoforms. The effect of specific inhibitors of NHE-2 and NHE-3 isoforms (50 microM HOE 694 and 2 microM S3226, respectively) on unidirectional 22Na transepithelial fluxes performed across isolated mucosa from rat distal colon under voltage-clamp conditions was examined. HCO3 stimulation of Na absorption was inhibited by EIPA, a nonspecific inhibitor of all NHE isoforms, by S3226 and dibutyryl cAMP but not by HOE 694. In contrast, butyrate stimulation of Na absorption was not altered by dibutyryl cAMP and was not inhibited by HOE 694 in the absence of dibutyryl cAMP, but in the presence of dibutyryl cAMP was HOE694 sensitive. In contrast, S3226 inhibited butyrate-stimulated Na absorption in the absence of dibutyryl cAMP, but not in its presence. We conclude that 1) HCO3-stimulated Na absorption is mediated solely by NHE-3 isoform, whereas butyrate-stimulated Na absorption is mediated by either NHE-3 or NHE-2 isoform, and 2) dibutyryl cAMP selectively inhibits NHE-3 isoform but stimulates NHE-2 isoform. Dibutyryl cAMP does not inhibit butyrate-stimulated Na absorption as a result of its differential effects on NHE-2 and NHE-3 isoforms.  相似文献   

6.
Na absorption across the cornified, multilayered, and squamous rumen epithelium is mediated by electrogenic amiloride-insensitive transport and by electroneutral Na transport. High concentrations of amiloride (>100 μM) inhibit Na transport, indicating Na(+)/H(+) exchange (NHE) activity. The underlying NHE isoform for transepithelial Na absorption was characterized by mucosal application of the specific inhibitor HOE642 for NHE1 and S3226 for NHE3 in Ussing chamber studies with isolated epithelia from bovine and sheep forestomach. S3226 (1 μM; NHE3 inhibitor) abolished electroneutral Na transport under control conditions and also the short-chain fatty acid-induced increase of Na transport via NHE. However, HOE642 (30 μM; NHE1 inhibitor) did not change Na transport rates. NHE3 was immunohistochemically localized in membranes of the upper layers toward the lumen. Expression of NHE1 and NHE3 has been previously demonstrated by RT-PCR, and earlier experiments with isolated rumen epithelial cells have shown the activity of both NHE1 and NHE3. Obviously, both isoforms are involved in the regulation of intracellular pH, pH(i). However, transepithelial Na transport is only mediated by apical uptake via NHE3 in connection with extrusion of Na by the basolaterally located Na-K-ATPase. The missing involvement of NHE1 in transepithelial Na transport suggests that the proposed "job sharing" in epithelia between these two isoforms probably also applies to forestomach epithelia: NHE3 for transepithelial transport and NHE1 for, among others, pH(i) and volume regulation.  相似文献   

7.
NHE8 is a newly identified NHE isoform expressed in rat intestine. To date, the kinetic characteristics and the intestinal segmental distribution of this NHE isoform have not been studied. This current work was performed to determine the gene expression pattern of the NHE8 transporter along the gastrointestinal tract, as well as its affinity for Na(+), H(+), and sensitivity to known NHE inhibitors HOE694 and S3226. NHE8 was differentially expressed along the GI tract. Higher NHE8 expression was seen in stomach, duodenum, and ascending colon in human, while higher NHE8 expression was seen in jejunum, ileum and colon in adult mouse. Moreover, the expression level of NHE8 is much higher in the stomach and jejunum in young mice compared with adult mice. To evaluate the functional characterictics of NHE8, the pH indicator SNARF-4 was used to monitor the rate of intra-cellular pH (pH(i)) recovery after an NH(4)Cl induced acid load in NHE8 cDNA transfected PS120 cells. The NHE8 cDNA transfected cells exhibited a sodium-dependent proton exchanger activity having a Km for pH(i) of approximately pH 6.5, and a Km for sodium of approximately 23 mM. Low concentration of HOE694 (1 microM) had no effect on NHE8 activity, while high concentration (10 microM) significantly reduced NHE8 activity. In the presence of 80 microM S3226, the NHE8 activity was also inhibited significantly. In conclusion, our work suggests that NHE8 is expressed along the gastrointestinal tract and NHE8 is a functional Na(+)/H(+) exchanger with kinetic characteristics that differ from other apically expressed NHE isoforms.  相似文献   

8.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i)) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na(+) concentration ([Na(+)](o)) during pH(i) recovery decreased H(+) efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na(+). The Na(+)/H(+) exchange inhibitors ethylisopropylamiloride and amiloride inhibited H(+) efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na(+)](o) and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na(+)/H(+) exchange by isoforms NHE1, NHE2, and NHE3.  相似文献   

9.
Na+/H+ exchange activity has been examined in endothelial cells isolated from porcine brain capillaries. Intracellular pH (pHi) changes were monitored using a confocal laser scanning microscope and the pH-sensitive fluorescence indicator 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). Acid load of the brain capillary endothelial cells was performed with a NH4Cl (20 mM) prepulse. In bicarbonate-free solutions pHi recovered within 3 to 10 min. Removal of extracellular Na+ ions demonstrated that H+ extrusion after an acid load of the cells was Na+ dependent. The Na+/H+ exchange could be completely blocked by EIPA (5-(N-ethyl-N-isopropyl)amiloride) as well as by the novel inhibitor 3-methylsulfonyl-4-piperidinobenzoyl guanidine hydrochloride (HOE 694) in concentrations of 1 to 10 microM, respectively. EIPA and HOE 694 in a concentration of 0.1 microM caused a partial block of Na+/H+ exchange.  相似文献   

10.
Sodium/proton exchangers [Na(+)/H(+) (NHEs)] play an important role in salt and water absorption from the intestinal tract. To investigate the contribution of the apical membrane NHEs, NHE2 and NHE3, to electroneutral NaCl absorption, we measured radioisotopic Na(+) and Cl(-) flux across isolated jejuna from wild-type [NHE(+)], NHE2 knockout [NHE2(-)], and NHE3 knockout [NHE3(-)] mice. Under basal conditions, NHE(+) and NHE2(-) jejuna had similar rates of net Na(+) (approximately 6 microeq/cm(2) x h) and Cl(-) (approximately 3 microeq/cm(2) x h) absorption. In contrast, NHE3(-) jejuna had reduced net Na(+) absorption (approximately 2 microeq/cm(2) x h) but absorbed Cl(-) at rates similar to NHE(+) and NHE2(-) jejuna. Treatment with 100 microM 5-(N-ethyl-N-isopropyl) amiloride (EIPA) completely inhibited net Na(+) and Cl(-) absorption in all genotypes. Studies of the Na(+) absorptive flux (J) indicated that J in NHE(+) jejunum was not sensitive to 1 microM EIPA, whereas J in NHE3(-) jejunum was equally sensitive to 1 and 100 microM EIPA. Treatment with forskolin/IBMX to increase intracellular cAMP (cAMP(i)) abolished net NaCl absorption and stimulated electrogenic Cl(-) secretion in all three genotypes. Quantitative RT-PCR of epithelia from NHE2(-) and NHE3(-) jejuna did not reveal differences in mRNA expression of NHE3 and NHE2, respectively, when compared with jejunal epithelia from NHE(+) siblings. We conclude that 1) NHE3 is the dominant NHE involved in small intestinal Na(+) absorption; 2) an amiloride-sensitive Na(+) transporter partially compensates for Na(+) absorption in NHE3(-) jejunum; 3) cAMP(i) stimulation abolishes net Na(+) absorption in NHE(+), NHE2(-), and NHE3(-) jejunum; and 4) electroneutral Cl(-) absorption is not directly dependent on either NHE2 or NHE3.  相似文献   

11.
The Na+/H+ exchanger isoforms NHE1, NHE2, and NHE3 were all found to be expressed in Ehrlich ascites tumor cells, as evaluated by Western blotting and confocal microscopy. Under unstimulated conditions, NHE1 was found predominantly in the plasma membrane, NHE3 intracellularly, and NHE2 in both compartments. Osmotic cell shrinkage elicited a rapid intracellular alkalinization, the sensitivity of which to EIPA (IC50 0.19 microM) and HOE 642 (IC50 0.85 microM) indicated that it predominantly reflected activation of NHE1. NHE activation by osmotic shrinkage was inhibited by the protein kinase C inhibitors chelerythrine (IC50 12.5 microM), G? 6850 (5 microM), and G? 6976 (1 microM), and by the p38 MAPK inhibitor SB 203580 (10 microM). Furthermore, hypertonic cell shrinkage elicited a biphasic increase in p38 MAPK phosphorylation, with the first significant increase detectable 2 minutes after the hypertonic challenge. Neither myosin light chain kinase-specific concentrations of ML-7 (IC50 40 microM) nor ERK1/2 inhibition by PD 98059 (50 microM) had any effect on NHE activation. Under isotonic conditions, the serine/threonine protein phosphatase inhibitor calyculin A elicited an EIPA- and HOE 642-inhibitable intracellular alkalinization, indicating NHE1 activation. Similarly, shrinkage-induced NHE activation was potentiated by calyculin A. The calyculin A-induced alkalinization was not associated with an increase in the free, intracellular calcium concentration, but was abolished by chelerythrine. It is concluded that shrinkage-induced NHE activation is dependent on PKC and p38 MAPK, but not on MLCK or ERK1/2. NHE activity under both iso- and hypertonic conditions is increased by inhibition of serine/threonine phosphatases, and this effect appears to be PKC-dependent.  相似文献   

12.
13.
The Na(+)/H(+) exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by extruding an intracellular H(+) in exchange for one extracellular Na(+). The human NHE1 isoform is involved in heart disease and cell growth and proliferation. Although details of NHE1 regulation and transport are being revealed, there is little information available on the structure of the intact protein. In this report, we demonstrate overexpression, purification, and characterization of the human NHE1 (hNHE1) protein in Saccharomyces cerevisiae. Overproduction of the His-tagged protein followed by purification via nickel-nitrilotriacetic acid-agarose chromatography yielded 0.2 mg of pure protein/liter of cell culture. Reconstitution of hNHE1 in proteoliposomes demonstrated that the protein was active and responsive to an NHE1-specific inhibitor. Circular dichroism spectroscopy of purified hNHE1 revealed that the protein contains 41% alpha-helix, 23% beta-sheet, and 36% random coil. Size exclusion chromatography indicated that the protein-detergent micelle was in excess of 200 kDa, consistent with an hNHE1 dimer. Electron microscopy and single particle reconstruction of negatively stained hNHE1 confirmed that the protein was a dimer, with a compact globular domain assigned to the transmembrane region and an apical ridge assigned to the cytoplasmic domain. The transmembrane domain of the hNHE1 reconstruction was clearly dimeric, where each monomer had a size and shape consistent with the predicted 12 membrane-spanning segments for hNHE1.  相似文献   

14.
15.
We investigated the question of whether inhibition of the Na(+)/H(+) exchanger (NHE) during ischemia is protective due to reduction of cytosolic Ca(2+) accumulation or enhanced acidosis in cardiomyocytes. Additionally, the role of the Na(+)-HCO(3)(-) symporter (NBS) was investigated. Adult rat cardiomyocytes were exposed to simulated ischemia and reoxygenation. Cytosolic pH [2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)], Ca(2+) (fura 2), Na(+) [sodium-binding benzolfuran isophthatlate (SBFI)], and cell length were measured. NHE was inhibited with 3 micromol/l HOE 642 or 1 micromol/l 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and NBS was inhibited with HEPES buffer. During anoxia in bicarbonate buffer, cells developed acidosis and intracellular Na and Ca (Na(i) and Ca(i), respectively) overload. During reoxygenation cells underwent hypercontracture (44.0 +/- 4.1% of the preanoxic length). During anoxia in bicarbonate buffer, inhibition of NHE had no effect on changes in intracellular pH (pH(i)), Na(i), and Ca(i), but it significantly reduced the reoxygenation-induced hypercontracture (HOE: 61.0 +/- 1.4%, EIPA: 68.2 +/- 1.8%). The sole inhibition of NBS during anoxia was not protective. We conclude that inhibition of NHE during anoxia protects cardiomyocytes against reoxygenation injury independently of cytosolic acidification and Ca(i) overload.  相似文献   

16.
Enhanced Na(+)/H(+) exchange, measured as amiloride derivative-sensitive Na(+) and H(+) fluxes in cells with a preliminary acidified cytoplasm (Deltamu(H+)-induced Na(+)/H(+) exchange), is one of the most prominent intermediate phenotypes of altered vascular smooth muscle cell (VSMC) function in spontaneously hypertensive rats (SHR). Analysis of Na(+)/H(+) exchange in F(2) hybrids of SHR and normotensive rats seems to be the most appropriate approach in the search for the genetic determinants of abnormal activity of this carrier. However, the measurement of Deltamu(H+)-induced Na(+)/H(+) exchange is hardly appropriate for precise analysis of the carrier's activity in VSMC derived from several hundred F(2) hybrids. To overcome this problem, we compared the rate of (22)Na influx under baseline conditions and in Na(+)-loaded (ouabain-treated) VSMC. The dose-dependency of the rate of Deltamu(H+)-induced H(+) efflux as well as of (22)Na influx in control and ouabain-treated cells on ethylisopropylamiloride (EIPA) concentration were not different (K(0.5) approximately 0.3 microM), suggesting that these ion transport pathways are mediated by the same carrier. EIPA-sensitive (22)Na influx in Na(+)-loaded cells was approximately 6-fold higher than in ouabain-untreated VSMC and was increased by 50-70% in two different substrains of SHR. About the same increment of EIPA-sensitive (22)Na influx in Na(+)-loaded VSMC was observed in 5- to 6-week-old SHR (an age at which hypertension has not yet developed) as well as in stroke-prone SHR (SHRSP) with severe hypertension, indicating that the heightened activity of Na(+)/H(+) exchange is not a consequence of long-term blood pressure elevation. To examine whether or not the augmented activity of Na(+)/H(+) exchange in SHR is caused by mutation of NHE1, i.e. the only isoform of this carrier expressed in VSMC, we undertook single-stranded conformational polymorphism analysis of 23 NHE1 cDNA fragments from SHR and SHRSP and sequencing of the 456-2421 NHE1 cDNA fragment. This study did not reveal any mutation in the entire coding region of NHE1. The lack of mutation in the coding region of NHE1 indicates that the augmented activity of the ubiquitous Na(+)/H(+) exchanger in primary hypertension is caused by altered regulation of carrier turnover number or/and its plasma membrane content.  相似文献   

17.
This report presents a study of the effects of the membrane fluidizer, benzyl alcohol, on NHE isoforms 1 and 3. Using transfectants of an NHE-deficient fibroblast, we analyzed each isoform separately. An increase in membrane fluidity resulted in a decrease of ≈50% in the specific activities of both NHE1 and NHE3. Only V max was affected; K Na was unchanged. This effect was specific, as Na+, K+, ATPase activity was slightly stimulated. Inhibition of NHE1 and NHE3 was reversible and de novo protein synthesis was not required to restore NHE activity after washout of fluidizer. Inhibition kinetics of NHE1 by amiloride, 5-(N,N-dimethyl)amiloride (DMA), 5-(N-hexamethyl)amiloride (HMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were largely unchanged. Half-maximal inhibition of NHE3 was also reached at approximately the same concentrations of amiloride and analogues in control and benzyl alcohol treated, suggesting that the amiloride binding site was unaffected. Inhibition of vesicular transport by incubation at 4°C augmented the benzyl alcohol inhibition of NHE activity, suggesting that the fluidizer effect does not solely involve vesicle trafficking. In summary, our data demonstrate that the physical state of membrane lipids (fluidity) influences Na+/H+ exchange and may represent a physiological regulatory mechanism of NHE1 and NHE3 activity. Received: 23 January 1997/Revised: 1 August 1997  相似文献   

18.
In the renal medullary thick ascending limb (MTAL), inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with amiloride or nerve growth factor (NGF) results secondarily in inhibition of the apical NHE3 Na(+)/H(+) exchanger, thereby decreasing transepithelial HCO3- absorption. MTALs from rats were studied by in vitro microperfusion to identify the mechanism underlying cross-talk between the two exchangers. The basolateral addition of 10 microM amiloride or 0.7 nM NGF decreased HCO3- absorption by 27-32%. Jasplakinolide, which stabilizes F-actin, or latrunculin B, which disrupts F-actin, decreased basal HCO3- absorption by 30% and prevented the inhibition by amiloride or NGF. Jasplakinolide had no effect on HCO3- absorption in tubules bathed with amiloride or a Na(+)-free bath to inhibit NHE1. Jasplakinolide and latrunculin B did not prevent inhibition of HCO3- absorption by vasopressin or stimulation by hyposmolality, factors that regulate HCO3- absorption through primary effects on apical Na(+)/H(+) exchange. Treatment of MTALs with amiloride or NGF for 15 min decreased polymerized actin with no change in total cell actin, as assessed both by fluorescence microscopy and by actin Triton X-100 solubility. Jasplakinolide prevented amiloride-induced actin remodeling. Vasopressin, which inhibits HCO3- absorption by an amount similar to that observed with amiloride and NGF but does not act via NHE1, did not affect cellular F-actin content. These results indicate that basolateral NHE1 regulates apical NHE3 and HCO3- absorption in the MTAL by controlling the organization of the actin cytoskeleton.  相似文献   

19.
Trefoil factor (TFF) peptides are pivotal for gastric restitution after surface epithelial damage, but TFF cellular targets that promote cell migration are poorly understood. Conversely, Na/H exchangers (NHE) are often implicated in cellular migration but have a controversial role in gastric restitution. Using intravital microscopy to create microscopic lesions in the mouse gastric surface epithelium and directly measure epithelial restitution, we evaluated whether TFFs and NHE isoforms share a common pathway to promote epithelial repair. Blocking Na/H exchange (luminal 10 μm 5-(N-ethyl-N-isopropyl) amiloride or 25 μm HOE694) slows restitution 72-83% in wild-type or NHE1(-/-) mice. In contrast, HOE694 has no effect on the intrinsically defective gastric restitution in NHE2(-/-) mice or TFF2(-/-) mice. In TFF2(-/-) mice, NHE2 protein is reduced 23%, NHE2 remains localized to apical membranes of surface epithelium, and NHE1 protein amount or localization is unchanged. The action of topical rat TFF3 to accelerate restitution in TFF2(-/-) mice was inhibited by AMD3100 (CXCR4 receptor antagonist). Furthermore, rat TFF3 did not rescue restitution when NHE2 was inhibited [TFF2(-/-) mice +HOE694, or NHE2(-/-) mice]. HOE694 had no effect on pH at the juxtamucosal surface before or after damage. We conclude that functional NHE2, but not NHE1, is essential for mouse gastric epithelial restitution and that TFFs activate epithelial repair via NHE2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号