首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some theories for the maintenance of sexual reproduction indicate that parthenogens may persist if there is high clonal diversity and high dispersal rates. Using allozymic variation, we report on the origin, clonal diversity and population structure of hybrid and spontaneous parthenogens from south-eastern United States populations of the freshwater snail Campeloma. Independent origins of triploid hybrid parthenogens in the Florida panhandle occurred by hybridization between an Atlantic coastal species (C. limum or C. floridense) and the Florida sexual species (C. geniculum). Allozyme genotypic diversity is similar between these hybrid parthenogens and sexuals. Diploid spontaneous parthenogens originated multiple times from nonlocal C.limum sexual populations in Atlantic coastal rivers, and levels of genotypic diversity are significantly higher in sexual C. limum. How parthenogens originate, the degree of clonal diversity, and their subsequent dispersal influence whether basic assumptions of evolution-of-sex models are met.  相似文献   

2.
Two theories for the maintenance of sexual reproduction, the Red Queen hypothesis and mutation accumulation, suggest that the dispersal rates of sexuals and asexuals may determine the elimination or persistence of asexuals. Under higher dispersal rates of asexuals, asexuals may temporarily escape virulent parasites and reduce the effects of deleterious mutations. In the present study, I examine the population structure, parasite loads, and juvenile survivorship of Campeloma limum sexuals and autodiploid parthenogens from the southeastern U.S. Atlantic coastal plain. Using mtDNA sequence variation, it is shown that parthenogenetic haplotypes with limited sequence divergence are geographically widespread throughout this region and there is no significant population differentiation over a broad geographical scale. Sexual C. limum populations show significant mtDNA differentiation among and within river drainages and there is significant isolation by distance. These patterns are consistent with a recent origin and range expansion of parthenogens. Prevalence of infection by digenetic trematodes is significantly higher in autodiploid parthenogens, and the variance of prevalence is also higher in autodiploid parthenogens. I argue that the latter pattern indicates that unparasitized parthenogens have temporarily escaped these virulent parasites, but recolonization of these populations by trematodes results in high infection levels (> 40%), possibly due to reduced variation in resistance genes. I also examined whether the survivorship of juvenile sexuals and parthenogens varied under different stress levels. Sexual juveniles had twofold higher survivorship in all environments. Compared to polyploid parthenogens, autodiploid parthenogens may be less buffered against the effects of deleterious recessive alleles. I propose that the combined effects of higher parasitism and reduced juvenile survivorship of these autodiploid parthenogens accounts for the spatial distribution of sexual and parthenogenetic C. limum in the Atlantic coastal plain. Parthenogens may persist by higher dispersal rates into marginal habitats where there is a temporary escape from digenetic trematodes and competition with sexuals.  相似文献   

3.
Parthenogenesis often evolves in association with hybridization, but the associated ecological consequences are poorly understood. The Australian gecko Heteronotia binoei is unusual because triploid parthenogenesis evolved through reciprocal crosses between two sexual lineages, resulting in four possible cytonuclear genotypes. In this species complex, we compared the performance of these parthenogenetic genotypes with their sexual progenitors for a suite of physiological traits (metabolic rate, thermal tolerance, locomotor performance, and in vitro activity and gene sequence divergence of a cytonuclear metabolic pathway, cytochrome C oxidase). Mass‐specific metabolic rate scaled differently with body mass for parthenogens and sexuals, while heat tolerance provided the only evidence for cytonuclear incompatibility in hybrid parthenogens. The most prominent phenotypic effects were attributable to nuclear genome dosage. Overall, our results suggest that the hybrid/polyploidy origin of parthenogenetic H. binoei has had surprisingly few negative fitness consequences and may have produced a broader overall niche for the species.  相似文献   

4.
Abstract: Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) were used to test for population subdivision in the bottlenose dolphin (Tursiops truncatus). Atlantic and Pacific dolphin mtDNA samples exhibited distinctly different haplotypes (approximately 2.4% sequence divergence), indicating a lack of gene exchange. Within the Atlantic Ocean, mtDNA samples from the Gulf of Mexico and the Atlantic Coast were also found to be distinct, with a sequence divergence of approximately 0.6%. The Atlantic Coast–Gulf of Mexico dichotomy is consistent with patterns of genetic variation from other marine and coastal organisms from this region, and supports the hypothesized role of bio-geographic events in promoting the divergence of these and other forms. Regional differentiation was identified along the Atlantic Coast, whereas low sequence divergences among haplotypes and consistent haplotype frequencies across populations suggested considerable gene exchange among Gulf of Mexico populations. A highly divergent haplotype found in two individuals from two localities in the Gulf of Mexico is best explained by dispersal from either a distinct offshore Gulf stock or an unsampled Atlantic Coast stock. Additional samples are required to test for the existence of a distinct offshore race and, if it exists, to identify its distribution and contribution to population structure.  相似文献   

5.
How parthenogenetic lineages arise from sexual ancestors may strongly influence their persistence over evolutionary time. Hybrid parthenogens often have elevated heterozygosity and ploidy, thus making it difficult to disentangle the influence of reproductive mode, hybridity and ploidy on their relative fitness. By comparing the relative fitness of both hybrid and non-hybrid parthenogens to their sexual ancestors, further insight may be gained into how these three factors influence the maintenance of sexual and parthenogenetic reproduction. In the present study, hybrid and non-hybrid parthenogenetic and sexual snails (Campeloma sp.) were compared for the following characteristics: female size-fecundity curves, offspring size, survivorship, and growth. Compared to nearby sexual populations, triploid hybrid parthenogens from the Florida Gulf coast have similar fecundity and offspring size, five-times higher survivorship, and 60% higher growth. Relative to nearby sexual populations, non-hybrid parthenogenetic C. limum from the Atlantic coast have significantly higher fecundity, smaller offspring size, similar survivorship and slightly lower growth. Given the considerable fitness advantages of parthenogens, especially hybrid parthenogens, it is enigmatic as to why these parthenogens occupy marginal natural habitats.  相似文献   

6.
The increased interest in asexual organisms calls for in-depth studies of asexual complexes that actively give rise to new clones. We present an extensive molecular study of the Otiorhynchus scaber (Coleoptera, Curculionidae) weevil system. Three forms have traditionally been recognized: diploid sexuals, triploid, and tetraploid parthenogens. All forms coexist in a small central area, but only the polyploid parthenogens have colonized marginal areas. Analyzing the phylogenetic relationship, based on three partial mitochondrial genes, of 95 individuals from 19 populations, we find that parthenogenesis and polyploidy have originated at least three times from different diploid lineages. We observe two major mitochondrial lineages, with over 2.5% sequence divergence between the most basal groups within them, and find that current distribution and phylogenetic relationships are weakly correlated. Quite unexpectedly, we also discover diploid clones that coexist with, and are morphologically indistinguishable from, the diploid sexual females. Our results support that these diploid clones are derived directly from the diploid sexuals. We also find that it is mainly an increase in ploidy level and not the benefits of asexual reproduction that confers to polyploid parthenogens the advantage over their diploid sexual relatives.  相似文献   

7.
Craig Moritz 《Chromosoma》1984,89(2):151-162
Within Australia, the gekkonid lizard Heteronotia binoei exists as diploid bisexual and triploid all-female populations. Three bisexual cytotypes and three triploid clones can be described on the basis of the morphology of gross karyotypes. This paper reports the results of a C-banding analysis that revealed both intrapopulation polymorphism and interpopulation polytypic variation within the most widespread bisexual cytotype (A6). A C-band variant that defined a ZW sex chromosome system in populations from the MacDonnell Ranges in central Australia was also identified. Silver staining confirmed that in all populations the nucleolus organising region always occurred distally on chromosome 6. Examination of C-banding and silver-staining patterns of triploid populations provided strong support for a hybrid origin of the parthenogens that involved the central and western A6 populations. It is proposed that the hybridisation of these populations with the other chromosomally distinct bisexual cytotypes (SM6) resulted in the triploid clones. At present, seven clones have been karyotypically defined, and all the chromosomal variants that were present in the triploids can be accounted for by multiple hybridisation events between the bisexual populations. The analysis also provided evidence that rare sterile tetraploid females are the result of insemination of the triploid parthenogens by male H. binoei. This paper is dedicated to the memory of M.J.D. White (1910–1983)  相似文献   

8.
Populations of unisexual organisms are often assumed to be genetically invariant (clones) and destined to a short existence on an evolutionary timescale. Unisexual organisms are most often obligate parthenogens and, by definition, ought to be completely isolated reproductively from related bisexual organisms. The assumption of complete reproductive isolation between amphimictic ancestors and thelytokous hybrids is common to most hypotheses on the evolution of sex and its adaptive significance. Stick insects of the genus Bacillus however provide evidence for reproductive interactions between allodiploid parthenogens and their ancestors, because pure species progeny (androgenetics) and triploid descendants are produced. These findings demonstrate that, through androgenesis, offspring of parthenogenetic hybrid females can contribute specimens of both sexes to the fathering species when fertilized by syntopic ancestral males and the parthenogenetic egg of strictly clonal females, when fertilized, allows a third genome to be added to the allodiploid chromosome set. These triploid genomes promote further genetic diversification and evolution of the unisexual populations through the formation of new clones by recombination during the changed maturation mode of allotriploid eggs. All this argues for much more complex breeding systems and evolutionary pathways than are usually assumed for hybrid unisexual organisms.  相似文献   

9.
The dispersal and history of species affects their genetic population structure at both small and large geographical scales. The common whelk, Buccinum undatum, is a widespread subtidal gastropod in the North Atlantic that has no planktonic larvae and has thus limited dispersal capacity. The snail, which has been harvested by humans for centuries, is highly variable in morphology. To evaluate the population structure in the rich fishing grounds in western Iceland and its divergence from samples across the Atlantic, genetic patterns based on sequence variation in two mitochondrial (mt)DNA genes (COI and 16S) and five microsatellites were studied and compared with variation in populations from both sides of the Atlantic. Significant differences in allele and haplotype frequencies were found among samples separated by short distances along the coast of Iceland. Partition of the variation showed larger variance among samples obtained from distant regions than from neighbouring sites and genetic distances were correlated with geographical distance among populations in Europe. Phylogeographic patterns in mtDNA reveal different monophyletic lineages on both sides of the Atlantic, which predate the onset of the Ice Age and which may constitute cryptic species. Similar micro‐ and macrogeographical patterns were observed for the mtDNA and microsatellite markers, despite high frequencies of null alleles. Bayesian skyline reconstructions of the demographic history and mismatch distributions suggest that, although sizes of some populations were unaffected by Ice Age glaciations, others show signs of expansion after the Last Glacial Maximum. These phylogeographical patterns are consistent with patterns expected for low dispersal species that have survived in allopatric glacial refugial populations on both sides of the Atlantic and in deep‐sea refugia within each continent. The observed genetic structure has implications for conservation and sustainable management of the harvested populations. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 145–159.  相似文献   

10.
Variation at 18 allozyme loci was assayed among representatives of the geographically widespread, triploid parthenogenetic form of Heteronotia binoei. A minimum of 52 different genotypes were observed among 143 individuals. Virtually all localities sampled had multiple genotypes among the unisexuals. This represents unusually high genotypic diversity for a unisexual vertebrate. Heterozygosity in the triploids was higher than in diploid bisexual populations of H. binoei. Comparison with the alleles present in the diploid bisexuals confirms that the parthenogens are hybrids and indicates that most of the genotypic diversity stems from repetitive hybrid origins. However, the presence of some alleles unique to the parthenogens suggests that mutation adds to their genetic diversity. The genetic structure of this geographically widespread parthenogen suggests the hypothesis that the persistence and spread of the unisexual lineages is facilitated by genotypic diversity.  相似文献   

11.
The adaptive radiation of the seven‐spined gobies (Gobiidae: Gobiosomatini) represents a classic example of how ecological specialization and larval retention can drive speciation through local adaptation. However, geographically widespread and phenotypically uniform species also do occur within Gobiosomatini. This lack of phenotypic variation across large geographic areas could be due to recent colonization, widespread gene flow, or stabilizing selection acting across environmental gradients. We use a phylogeographic approach to test these alternative hypotheses in the naked goby Gobiosoma bosc, a widespread and phenotypically invariable intertidal fish found along the Atlantic Coast of North America. Using DNA sequence from 218 individuals sampled at 15 localities, we document marked intraspecific genetic structure in mitochondrial and nuclear genes at three main geographic scales: (i) between Gulf of Mexico and Atlantic Coast, (ii) between the west coast of the Florida peninsula and adjacent Gulf of Mexico across the Apalachicola Bay, and (iii) at local scales of a few hundred kilometers. Clades on either side of Florida diverged about 8 million years ago, whereas some populations along the East Cost show divergent phylogroups that have differentiated within the last 200,000 years. The absence of noticeable phenotypic or ecological differentiation among lineages suggests the role of stabilizing selection on ancestral phenotypes, together with isolation in allopatry due to reduced dispersal and restricted gene flow, as the most likely explanation for their divergence. Haplotype phylogenies and spatial patterns of genetic diversity reveal frequent population bottlenecks followed by rapid population growth, particularly along the Gulf of Mexico. The magnitude of the genetic divergence among intraspecific lineages suggests the existence of cryptic species within Gobiosoma and indicates that modes of speciation can vary among lineages within Gobiidae.  相似文献   

12.
We determined allozyme variability of 34 populations of the pitcher-plant mosquito, Wyeomyia smithii, from Florida (30°N) to northern Manitoba (54°N) and compared allozyme variability with the additive genetic variance for preadult development time and photoperiodic response determined previously for six populations over a similar range (30–50°N). Phylogenetic analysis of allozymes shows a well-defined split between Gulf Coast and lowland North Carolina populations, similar to previously observed phylogeographic patterns in a wide variety of taxa. A deeper split in the phylogeny of W. smithii coincides with the location of the maximum extent of the Laurentide Ice Sheet. Furthermore, both average heterozygosity and patterns of isolation-by-distance decline in populations north of the former glacial border. It is likely that northern populations are the result of a range expansion that occurred subsequent to the late-Wisconsin retreat of the Laurentide Ice Sheet and that these populations have not yet reached a drift-migration equilibrium. The northern decline in allozyme heterozygosity contrasts sharply with the northern increase in additive genetic variance of development time and photoperiodic response found in previous studies. These previous studies also showed that the genetic divergence of populations has involved stochastic variation in the contribution of dominance and epistasis to the genetic architecture underlying demographic traits, including preadult development time, and photoperiodic response. When taken together, the present and prior studies identify the genetic processes underlying the lack of concordance between geographic patterns of allozyme and quantitative genetic variation in natural populations of W. smithii. In the presence of nonadditive genetic variation, isolation and drift can result in opposite patterns of genetic variation for structural genes and quantitative traits.  相似文献   

13.
Levels and distribution of genetic variation were studied in central and western European populations of Taraxacum section Ruderalia containing differing mixtures of sexual diploid and asexual triploid plants. All sexual populations were panmictic with their variation partitioned mainly among populations. Genotypic diversity in triploid samples was very high with few clones widespread and many clones restricted to one or a few populations. Extensive amounts of gene (pollen) flow between the diploid and triploid components of a population were inferred from the following data: (1) the two ploidy levels share all major allozyme polymorphisms; (2) the intrapopulational homogeneity in genic variation between diploids and triploids contrasts strongly with the geographic differentiation at each ploidy level separately; (3) population-unique alleles simultaneously occur at the two ploidy levels; (4) not only sexuals but also asexuals generally simulate Hardy-Weinberg expectations. Most likely, intrapopulational gene exchange occurs bidirectionally by mechanisms such as reductional pollen meiosis in apomictic plants, facultative apomixis, and formation of unreduced gametes in sexuals. Thus, diploid and triploid Taraxacum section Ruderalia are less genetically isolated than has previously been supposed and probably form a cohesive evolutionary unit with the level at which gene pools are shared differing by population.  相似文献   

14.
In this study, previously unrecognized hybridization was documented between two meadow katydids in each of two disjunct contact zones, in the southeastern United States and along the Potomac River near Washington, DC. These two zones have very different histories and dynamics of interaction between the two taxa. Orchelimum nigripes and O. pulchellum (Tettigoniidae: Conocephalinae) are distributed west and east, respectively, of the Appalachian Mountains, from the Great Lakes to the Gulf Coast and along the Atlantic Coastal Plain from New York to the Florida Keys, but are not found in the Appalachians themselves. In addition, during this century O. nigripes has become established in a small area east of the Appalachians, in the Potomac River basin, where it has completely replaced O. pulchellum along the river corridor above Washington, DC. I sampled katydids from 40 sites across both hybrid zones and mapped geographic patterns of genetic variation (allele frequencies at two diagnostic loci) and variation in a morphometric index for males. Although the two taxa are quite distinct over most of their extensive distributions, there is clear evidence of introgression in both contact zones. In the Deep South, samples from a transect along the Gulf Coast define a broad hybrid zone of about 50–100 km, while samples from a transect 200 km to the north define a zone of about 150–250 km in width. Only one Deep South population shows a deviation from Hardy-Weinberg equilibrium at either locus, and there is no evidence of linkage disequilibrium in any Deep South population. In the Potomac region, there is a narrow upstream-downstream hybrid zone along the river. Within the Potomac River floodplains downriver from Washington, DC, as well as outside the floodplains throughout the region, O. pulchellum is present in abundance, but O. nigripes markers are virtually absent. Within the floodplains upriver from Washington, DC, O. nigripes is abundant, but O. pulch***ellum markers are virtually absent. All four mixed ancestry Potomac populations sampled show strong and highly significant linkage disequilibrium, although only one clearly deviates from single-locus Hardy-Weinberg equilibrium. The position of the Deep South hybrid zone is generally consistent with interspecific and intraspecific phylogeographic patterns previously reported for numerous taxa from the southeastern United States. The observed genetic and morphometric clines appear to be the result of neutral introgression over thousands of years. In the much younger Potomac hybrid zone, O. nigripes appears to be spreading downriver, interbreeding with O. pulchellum, and replacing it. The mechanism for this replacement remains uncertain, but may be clarified by ongoing behavioral, genetic, and breeding studies.  相似文献   

15.
Evolutionary relationships among stone crabs (Menippe) from the Gulf of Mexico and western Atlantic were investigated by comparisons of restriction sites within anonymous nuclear DNA sequences and nucleotide sequences of both mitochondrial and a duplicated nuclear form of the mitochondrial large subunit ribosomal RNA (LSrDNA) gene. A survey of over 100 restriction sites by Southern blot analysis with 10 anonymous nuclear DNA sequence probes failed to reveal any differences between Menippe adina and M. mercenaria. Sequence comparisons of both mitochondrial and nuclear forms of the LSrDNA gene also did not distinguish these species. Although both LSrDNA gene sequences were variable, some haplotypes were shared by the two species, implying either incomplete gene lineage sorting or introgressive hybridization. Based on molecular clock calibrations, we estimate that all of the observed mitochondrial LSrDNA sequences share a common ancestor between 1.5 and 2.7 million years before present (M.Y.B.P.). However, because identical sequences are shared by the two species, these data are also compatible with a more recent common ancestry. These findings conflict with a previously proposed biogeographic scenario for North American Menippe, which featured a relict hybrid zone on the Atlantic Coast. We suggest an alternative scenario based on relatively recent events and ongoing, rather than historical, gene flow.  相似文献   

16.
Many benthic marine invertebrates show striking range disjunctions across broad spatial scales. Without direct evidence for endemism or introduction, these species remain cryptogenic. The common ragworm Hediste diversicolor plays a pivotal role in sedimentary littoral ecosystems of the North Atlantic as an abundant prey item and ecosystem engineer, but exhibits a restricted dispersal capacity that may limit connectivity at both evolutionary and ecological time scales. In Europe, H. diversicolor is subdivided into cryptic taxa and genetic lineages whose distributions have been modified by recent invasions. Its origin in the northwest Atlantic has not been adequately addressed. To trace the age and origin of North American ragworm populations, we analyzed mtDNA sequence data (COI) from the Gulf of Maine and Bay of Fundy (n=73 individuals) and compared our findings with published data from the northeast Atlantic. Our results together with previous data indicate that two species of the H. diversicolor complex have independently colonized the northwest Atlantic at least three different times, resulting in two distinct conspecific assemblages in the Bay of Fundy and Gulf of Maine (respectively) that are different from the species found in the Gulf of St. Lawrence. North American populations had significantly lower genetic diversity compared with populations in the northeast Atlantic, and based on patterns of shared identity, populations in the Bay of Fundy originated from the Baltic Sea and North Sea. Populations from the Gulf of Maine were phylogenetically distinct and most likely originated from unsampled European populations. Analyses of the North American populations revealed patterns of post‐colonization gene flow among populations within the Gulf of Maine and Bay of Fundy. However, we failed to detect shared haplotypes between the two regions, and this pattern of complete isolation corroborates a strong phylogeographic break observed in other species.  相似文献   

17.
In Morocco, Clonopsis stick insects showed tangled reproductive interactions actually resulting into a network of phylogenetic relationships known as ‘reticulate evolution’. Peculiar to parthenogenetic C. gallica and C. soumiae (54 and 72 chromosomes, respectively) – closely related to the bisexual C. felicitatis (2n = 36) – is the finding of numerically polyploid karyotypes with a diploid structure. Androgenesis appeared to be the most parsimonious explanation accounting for both the low mitochondrial differentiation and the quick onset of those polyploids with structurally diploid karyotypes, paired with neat nuclear differentiations. According to a proposed model, hybrid triploid females would segregate balanced haploid and diploid 2nd oocytes immediately producing all kinds of parthenogens and androgens. Owing to these peculiar reproductive issues, we felt useful searching for stronger evidence by deeply analysing the mitochondrial genome. This new analysis showed a neat separation of sexual Tetouan haplotypes from the parthenogenetic and androgenetic ones, which are grouped in two slightly overlapping groups by network analysis: Moroccan parthenogens and androgens vs European C. gallica. It could be also envisaged that C. gallica has multiple origins, being a complex of parthenogenetic strains originated through independent hybridizations. The straightforward mechanism originating both triploid and tetraploid parthenogens well fits with both their widely ascertained low mitochondrial differentiation and the geographical closeness of the most similar samples, independently from their specific karyotype. Combining the outcomes of the hybridization events and androgenesis, which completely substitutes hybrid genomes with those of a related paternal species, would conceivably realize the observed picture of species structure and distribution. Owing to the reinforced data set, it now appears much more sensible to support androgenesis as a quick pathway to originate polyploids with numerically and genetically sharply differing chromosome sets, while maintaining, at the same time, high mitochondrial similarity.  相似文献   

18.
The scarcity of parthenogenetic vertebrates is often attributed to their ‘inferior’ mode of clonal reproduction, which restricts them to self‐reproduce their own genotype lineage and leaves little evolutionary potential with regard to speciation and evolution of sexual reproduction. Here, we show that for some taxa, such uniformity does not hold. Using hybridogenetic water frogs (Pelophylax esculentus) as a model system, we demonstrate that triploid hybrid males from two geographic regions exhibit very different reproductive modes. With an integrative data set combining field studies, crossing experiments, flow cytometry and microsatellite analyses, we found that triploid hybrids from Central Europe are rare, occur in male sex only and form diploid gametes of a single clonal lineage. In contrast, triploid hybrids from north‐western Europe are widespread, occur in both sexes and produce recombined haploid gametes. These differences translate into contrasting reproductive roles between regions. In Central Europe, triploid hybrid males sexually parasitize diploid hybrids and just perpetuate their own genotype – which is the usual pattern in parthenogens. In north‐western Europe, on the other hand, the triploid males are gamete donors for diploid hybrids, thereby stabilizing the mixed 2n‐3n hybrid populations. By demonstrating these contrasting roles in male reproduction, we draw attention to a new significant evolutionary potential for animals with nonsexual reproduction, namely reproductive plasticity.  相似文献   

19.
Naturally occurring variation within a small rodent species native to the southeastern USA, Peromyscus polionotus, has interested biologists for nearly a century. This species has contributed significantly to our understanding of geographical variation and has often been presented as an example of adaptive evolution. Much of the interest in this organism has been predicated on assumptions that the species is relatively young (<300 000 bp) and that coastal populations have a very recent history (<10 000 bp). To test these assumptions and the prevailing biogeographical hypothesis (Recurrent Invasion), we examined nucleotide sequence data from the cytochrome b and D-loop mitochondrial regions (2449 bp) for 79 samples of P. polionotus collected across the Gulf Coast region of Florida and Alabama. Samples representing Peromyscus maniculatus bairdii, P. m. sonoriensis, P. m. pallescens, and P. keeni were used as outgroups. The degree of cytochrome b divergence (approximately 4.4%) between P. maniculatus and P. polionotus was higher than expected. Analyses consistently indicated that three distinct groups are represented within P. polionotus from the Gulf Coast region. Among these, coastal populations (beach mice) form a monophyletic group and apparently represent a substantially older group (approximately 200 000 year. separation) than previously recognized. Our results were counter to the core assumptions of the existing biogeographical model but were consistent with an alternative hypothesis (Shore-line Tracking) which provides a more parsimonious explanation for the observed patterns. This research provides new insight into the evolutionary history of P. polionotus and highlights the importance of considering biogeographical history when evaluating extant patterns of natural variation.  相似文献   

20.
Abstract A sexual reproduction is thought to doom organisms to extinction due to mutation accumulation and parasite exploitation. Theoretical models suggest that parthenogens may escape the negative effects of conspecific and biological enemiecs through escape in space. Through intensive sequencing of a mitochondrial DNA (mtDNA) and a nuclear intron locus in sexual and pathenogenetic freshwater snails (Campelom), I examine three questionss: (1) Are sexual mtDNA lineage more restricted geographically than parthenogenetic mtDNA lineages? (2) Are independent pathenogenetic lineages shorter lived than sexual lineages? (3) Do pathenogens have higher intraindividual nuclear sequence diversity and form well‐differentiated monophyletic groups as expected under the Meselson effect? Geographic ranges of parthenogenetic lineages are significantly larger than geographic ranges of sexual lineages. Based on coalescence times under different deographic assumptions, asexual lineages are short lived, but there is variation in clonal ages. Although alternative explanations exit, these results suggest that asexual lineages may persist in the short term through dispersal, and that various constraints may cause geographic restriction of sexual lineagess. Both allotriploid and diploid Campleloma parthenogens have significantly higher allelic divergence within individuals, but show limited nuclear sequence divergence from sexual ancestors. In contrast to previous allozyme evidence for nonhybrid origins of diploid Campeloma parthenogens, cryptic hybridization may account for elevated heterozygosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号