首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gompertz growth models were fitted to total lengths and ages from tooth sections of 199 stranded bottlenose dolphins ( Tursiops truncatus ) from the Indian River Lagoon system, eastern Florida. Based on the model, dolphins from this population are estimated to be born at 119 cm and reach asymptotic length at 250 cm. No apparent pubescent growth acceleration was noted for either sex. Males appeared to grow to slightly longer lengths than females. There were small size differences between Indian River dolphins and those in Texas and Sarasota, indicating general size similarities between North Atlantic and Gulf of Mexico bottlenose dolphins stocks.  相似文献   

2.
There is a need for biological information to support current stock designations of bottlenose dolphins (Tursiops truncatus) in the Gulf of Mexico. The existence of many inshore, resident “communities” raises questions as to the relationship these dolphins may hold with dolphins inhabiting neighboring inshore and coastal areas. In this study, population subdivision was examined among four resident, inshore bottlenose dolphin stocks (Sarasota Bay, FL, Tampa Bay, FL, Charlotte Harbor, FL and Matagorda Bay, TX) and one coastal stock (1–12 km offshore) in the Gulf of Mexico. Evidence of significant population structure among all areas was found on the basis of both mitochondrial DNA (mtDNA) control region sequence data and nine nuclear microsatellite loci. Estimates of relatedness showed no population contained a significantly high number of related individuals, while separate AMOVAs for males and females indicated that both sexes exhibit a significant level of site philopatry. Results presented here provide the first genetic evidence of population subdivision between the coastal Gulf of Mexico and adjacent inshore areas along the central west coast of Florida. Such strong genetic subdivision is surprising given the short geographical distance between many of these areas and the lack of obvious geographic barriers to prevent gene flow. These findings support the current, separate identification of stocks for bottlenose dolphins inhabiting the eastern coastal and inshore areas of the Gulf of Mexico.  相似文献   

3.
Whistle characteristics were quantitatively compared between both geographically separated and neighboring populations of Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins (Tursiops truncatus), and pilot whales (Globicephala spp.) in U.S. waters to evaluate if intraspecific acoustic differences exist between groups. We compared nine whistle characteristics between continental shelf and offshore Atlantic spotted dolphins in the western North Atlantic and between northern Gulf of Mexico and western North Atlantic bottlenose dolphins and pilot whales using discriminant analysis. Offshore Atlantic spotted dolphin whistles were significantly different (Hotelling's T2, P= 0.0003) from continental shelf whistles in high frequency, bandwidth, duration, number of steps, and number of inflection points. Atlantic bottlenose dolphin whistles were significantly different (Hotelling's T2, P < 0.0001) from those in the Gulf of Mexico in duration, number of steps, and number of inflection points. There was no significant difference between pilot whale whistles in the two basins. The whistle differences indicate acoustic divergence between groups in different areas that may arise from geographic isolation or habitat separation between neighboring but genetically distinct populations of dolphins. This study supports the premise that acoustic differences can be a tool to evaluate the ecological separation between marine mammal groups in field studies.  相似文献   

4.
Morbillivirus infection is widespread among odontocetes of the western Atlantic and Gulf of Mexico. Serologic evidence of infection in bottlenose dolphins, Tursiops truncatus , was first detected during an epizootic along the mid-Atlantic coast in 1987. Here, we report recurrent epizootics in the coastal dolphin population since at least the early 1980s based on serological surveys and regional stranding frequencies. The first observed epizootic of this series occurred in the Indian and Banana Rivers in 1982 and was followed by others on the mid-Atlantic coast in 1987–1988 and in the Gulf of Mexico between 1992 and 1994. This temporal pattern of infection is likely facilitated by the population size and its fragmentation into relatively discrete coastal communities. Introduction of morbillivirus into a community with a sufficient number of naive hosts may precipitate an epizootic, depending on the potential for transmission within the group. Propagation of an epizootic along the coast is probably determined by frequency of contact between adjacent communities and seasonal migrations.
Morbillivirus antibodies were also detected in serum from offshore bottlenose dolphins. The sero-prevalence in the latter may be higher than in coastal dolphins because of their close association with enzootically infected pilot whales ( Globicephala spp.). Occasional contact between offshore and coastal dolphins may provide an epizootiologic link between pilot whales and coastal dolphin communities.  相似文献   

5.
Despite their high abundance and wide distribution, little is known about the historical or current growth and age structure of coastal bottlenose dolphins ( Tursiops truncatus ) in the north-central Gulf of Mexico. Between 1986 and 2003, teeth were collected from bottlenose dolphins stranded on the mainland coast of Mississippi and the adjacent barrier islands. Bottlenose dolphin strandings occurred year round, peaking in March and April. Neonate strandings also peaked during these 2 mo. Age estimates were obtained from 111 animals by reading the growth layer groups in the dentine layer of the teeth. The ages ranged from <1 yr to 30 yr of age. The two-stage Laird–Gompertz growth model was fitted to the total length and age data. On the basis of this model, the asymptotic lengths were estimated at 250 cm for females and 255 cm for males. The length at birth estimates were 98–103 cm for females and 100–107 cm for males. These lengths are similar to those of bottlenose dolphin populations from other Gulf of Mexico areas and from the North Atlantic Ocean along the southeastern United States.  相似文献   

6.
The marine environment provides an opportunity to examine population structure in species with high dispersal capabilities and often no obvious barriers to genetic exchange. In coastal waters of the western North Atlantic, common bottlenose dolphins, Tursiops truncatus, are a highly mobile species with a continuous distribution from New York to Florida. We examine if the highly mobile nature coupled with no obvious geographic barriers to movement in this region result in a large panmictic population. Mitochondrial control region sequences and 18 microsatellite loci indicate dolphins are partitioning the habitat both latitudinally and longitudinally. A minimum of five genetically differentiated populations were identified among 404 samples collected in the range of New Jersey to northern Florida using both genetic marker types, some inhabiting nearshore coastal waters and others utilizing inshore estuarine waters. The genetic results reject the hypothesis of a single stock of coastal bottlenose dolphins put forth after the 1987–1988 epizootic that caused a large‐scale die‐off of dolphins and suggest instead the disease vector was transferred from one population to the next as a result of seasonal migratory movements of some populations. These coastal Atlantic populations also differ significantly from bottlenose dolphin samples collected in coastal waters of the northern Gulf of Mexico, implying a long‐term barrier to movement between the two basins.  相似文献   

7.
Distinguishing discrete population units among continuously distributed coastal small cetaceans is challenging and crucial to conservation. We evaluated the utility of stable isotopes in assessing group membership in bottlenose dolphins (Tursiops truncatus) off west-central Florida by analyzing carbon, nitrogen, and sulfur isotope values (δ13C, δ15N, and δ34S) of tooth collagen from stranded dolphins. Individuals derived from three putative general population units: Sarasota Bay (SB), nearshore Gulf of Mexico (GULF), and offshore waters (OFF). Animals of known history (SB) served to ground truth the approach against animals of unknown history from the Gulf of Mexico (GULF, OFF). Dolphin groups differed significantly for each isotope. Average δ13C values from SB dolphins (−10.6‰) utilizing sea grass ecosystems differed from those of GULF (−11.9‰) and OFF (−11.9‰). Average δ15N values of GULF (12.7‰) and OFF (13.2‰) were higher than those of SB dolphins (11.9‰), consistent with differences in prey trophic levels. δ34S values showed definitive differences among SB (7.1‰), GULF (11.3‰), and OFF (16.5‰) dolphins. This is the first application of isotopes to population assignment of bottlenose dolphins in the Gulf of Mexico and results suggest that isotopes may provide a powerful tool in the conservation of small cetaceans.  相似文献   

8.
The population structure of bottlenose dolphins, Tursiops truncatus, along the U.S. Atlantic coast has recently been redefined from one homogenous population into five coastal stocks. Local studies indicate even finer structure, primarily based on isolation of dolphins inhabiting estuaries. We identified population structuring of non‐estuarine coastal bottlenose dolphins during a study in New Jersey, the northern range along the Atlantic Coast. Using photo‐identification and distribution survey results, an analysis identified two major clusters of individuals significantly separated by five variables (distance from shoreline, group size, occurrence of the barnacle Xenobalanus globicipitis, avoidance behavior, and individual coloration). Sightings assigned to cluster 1 occurred in nearshore shallow waters (0–1.9 km, x?= 3.5 m), and those assigned to cluster 2 occurred further offshore in deeper waters (1.9–6 km, x?= 9.5 m). Only eight of 194 individuals (4%) were identified in both regions. Collectively, this suggests an occurrence of two stocks that are spatially, physically, and behaviorally distinguishable over a small distance. These results indicate that complexity in Tursiops population structure is not limited to latitudinal gradients or barriers created by estuarine habitats, but also by partitioning of habitat as a function of distance from shore and depth over small distances.  相似文献   

9.
Phylogenetic placement of bottlenose dolphins from Zanzibar, East Africa and putative population differentiation between animals found off southern and northern Zanzibar were examined using variation in mtDNA control region sequences. Samples (n= 45) from animals bycaught in fishing gear and skin biopsies collected during boat surveys were compared to published sequences (n= 173) of Indo‐Pacific bottlenose dolphin, Tursiops aduncus, from southeast Australian waters, Chinese/Indonesian waters, and South African waters (which recently was proposed as a new species) and to published sequences of common bottlenose dolphin, Tursiops truncatus. Bayesian and maximum parsimony analyses indicated a close relationship between Zanzibar and South African haplotypes, which are differentiated from both Chinese/Indonesian and Australian T. aduncus haplotypes. Our results suggest that the dolphins found off Zanzibar should be classified as T. aduncus alongside the South African animals. Further, analyses of genetic differentiation showed significant separation between the T. aduncus found off northern and southern Zanzibar despite the relatively short distance (approximately 80 km) between these areas. Much less differentiation was found between southern Zanzibar and South Africa, suggesting a more recent common evolutionary history for these populations than for the northern and southern Zanzibar populations.  相似文献   

10.
The health, postrelease movements, and behavior of mass stranded Atlantic white‐sided dolphins (Lagenorhynchus acutus) and short‐beaked common dolphins (Delphinus delphis) from Cape Cod, Massachusetts, were evaluated. Health was assessed through physical examination and blood analysis. Eleven dolphins (eight white‐sided dolphins and three common dolphins) were relocated, outfitted with satellite transmitters, and released during seven mass stranding events. Five transmitters recorded only location, and six also included a time‐depth recorder. Transmission duration ranged from 8 h to 218 d, with a mean of 117 d (median = 118 d, SD = 82 d), after release. All dolphins demonstrated extensive movement throughout the Gulf of Maine. The distribution of tagged dolphins was considered normal based on comparisons with published data for these species. Excluding the dolphin that transmitted for only 8 h, mean minimum speeds for individual dolphins ranged from 3.4 to 6.6 km/h; overall mean for all dolphins was 5.4 km/h (SD = 0.9 km/h). The five dolphins with time‐depth recorders had mean dive depths of 8.6–40.3 m and mean dive durations of 46–296 s. Hematologic and biochemical data revealed only minor abnormalities. Data suggest that at least 10 of the 11 dolphins were likely successfully reintroduced into the wild.  相似文献   

11.
Abstract: I studied behavior and range patterns of individual bottlenose dolphins during 1984 in the mid-eastern Gulf of California, Mexico. Dolphin sighting rate was significantly higher in areas close to estuary mouths, 0.306 sightings per hour compared with 0.155 sightings per hour in areas distant from estuary mouths. Dolphins used these estuarine areas to feed; 61% of all behavior observed near estuaries was feeding as compared with 23% elsewhere. Traveling comprised 61% of all behavior observed in areas distant from estuary mouths. Estuaries are sites of large concentrations of nutrients which support great numbers of filter-feeding zooplankton and fish. Bottlenose dolphins may specialize on esmarine prey, or they may feed in estuarine areas simply because of the abundance of potential prey that these systems support. In either case, data on relative numbers, distribution patterns, behavior and diet indicate that this is a general trend in habitat use for many coastal populations of this species in the Pacific and Atlantic.
Ranges of a few individuals spanned a minimum of 65 km of coastline, and animals were not permanent residents of a monitored bay. In contrast, dolphins off the coast of Sarasota, Florida, have been reported to be year-round residents with smaller ranges. This difference in degree of site fidelity may be related to habitat differences. The west coast of Florida is dotted with numerous and large estuarine systems which may host permanent prey populations and support resident groups of dolphins. The Gulf of California coastline contains few estuaries; most are small and perhaps support prey resources which are ephemeral, requiring dolphins to range over larger distances in search of food.  相似文献   

12.
The authors review the literature on bottlenose dolphin ecology, behavior and social organization, focusing on data collected on free-ranging animals. Most bottlenose dolphins studied to date have had definable home ranges, and behavioral, morphological and biochemical information indicates discrete stocks in some areas. Bottlenose dolphins appear to form relatively permanent social groups based on sex and age. Mother—calf bonds are long-lasting. Movement patterns are extremely variable from location to location but are relatively predictable at any given site. Food resources are one of the most important factors affecting movements. Bottlenose dolphin behavior is very flexible, and these dolphins are generally active day and night. Feeding peaks in the morning and afternoon have been observed at several sites. Social behavior is an important component of daily activities. Sharks are the most significant predator on bottlenose dolphins in most areas, but captive and wild studies show that dolphins and sharks frequently live in harmony as well. Human activities may be helpful, harmful or neutral to bottlenose dolphins, but interactions with humans are frequent for these coastal cetaceans.  相似文献   

13.
Abstract: Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) were used to test for population subdivision in the bottlenose dolphin (Tursiops truncatus). Atlantic and Pacific dolphin mtDNA samples exhibited distinctly different haplotypes (approximately 2.4% sequence divergence), indicating a lack of gene exchange. Within the Atlantic Ocean, mtDNA samples from the Gulf of Mexico and the Atlantic Coast were also found to be distinct, with a sequence divergence of approximately 0.6%. The Atlantic Coast–Gulf of Mexico dichotomy is consistent with patterns of genetic variation from other marine and coastal organisms from this region, and supports the hypothesized role of bio-geographic events in promoting the divergence of these and other forms. Regional differentiation was identified along the Atlantic Coast, whereas low sequence divergences among haplotypes and consistent haplotype frequencies across populations suggested considerable gene exchange among Gulf of Mexico populations. A highly divergent haplotype found in two individuals from two localities in the Gulf of Mexico is best explained by dispersal from either a distinct offshore Gulf stock or an unsampled Atlantic Coast stock. Additional samples are required to test for the existence of a distinct offshore race and, if it exists, to identify its distribution and contribution to population structure.  相似文献   

14.
In the Northwest Atlantic the distribution of coastal bottlenose dolphins ( Tursiops truncatus ) overlaps with that of the offshore ecotype. We hypothesized that the distribution of the two ecotypes could be delineated by depth and/or distance from shore, facilitating their identification during surveys. We obtained 304 skin biopsy samples and identified each as either coastal or offshore using analysis of mitochondrial DNA. We then interpreted the spatial distribution of coastal and offshore forms using spatial analysis. Using a Classification and Regression Tree (CART) analysis, we found a statistically significant break in ecotype distribution at 34 km from shore. In waters beyond 34 km from shore and deeper than 34 m, all bottlenose dolphins were of the offshore ecotype. Within 7.5 km of shore, all 65 samples were of the coastal ecotype. Between these two areas only nine samples were collected, so the genetic composition of bottlenose dolphins in this area remains poorly known. To enhance our understanding of the spatial distribution of the two ecotypes, future research should obtain more biopsy samples in this zone. Nevertheless, our results indicate that a conservative abundance estimate for the coastal ecotype could be generated from surveys of bottlenose dolphins within 7.5 km of shore.  相似文献   

15.
Bottlenose dolphins (Tursiops truncatus) along the Gulf of Mexico are frequently exposed to blooms of the toxic alga, Karenia brevis, and brevetoxins associated with these blooms have been implicated in several dolphin mortality events. Studies on brevetoxin accumulation in dolphins have typically focused on analyses of carcasses from large‐scale die‐offs; however, data are scarce for brevetoxin loads in live individuals frequently exposed to K. brevis blooms. This study investigated in vivo brevetoxin exposure in free‐ranging bottlenose dolphins resident to Sarasota Bay, Florida, utilizing samples collected during health assessments performed during multiple K. brevis blooms occurring from 2003 to 2005. Brevetoxins were detected by ELISA and LC‐MS in 63% of bottlenose dolphins sampled (n= 30) concurrently with a K. brevis bloom. Brevetoxins were present in urine and gastric samples at concentrations ranging from 2 to 9 ng PbTx‐3 eq/g, and in feces at concentrations ranging from 45 to 231 ng PbTx‐3 eq/g. Samples from individuals (n= 12) sampled during nonbloom conditions (≤1,000 cells/L) were negative for brevetoxin activity. Brevetoxin accumulation data from this study complement dolphin carcass and prey fish data from the same study area, and aid in evaluating impacts of harmful algal blooms on sentinel marine animal species along the west Florida coast.  相似文献   

16.
Cetacean morbilliviruses (CeMV) are viruses that can cause mass mortalities among various odontocete species. In this study levels of “herd” immunity in cetaceans from the U.S. coast are described from the distribution and prevalence of antibodies against morbilliviruses. Neutralizing antibody titers against dolphin morbillivirus (DMV), porpoise morbillivirus (PMV), phocine distemper (PDV), and canine distemper viruses (CDV) were measured. Positive samples had higher titers against the CeMV than against the other morbilliviruses tested, indicating that although PDV or CDV can be used to investigate exposure their use may result in a higher false negative rate. The results suggest that morbillivirus did not persist in coastal populations of bottlenose dolphins (Tursiops truncatus) after the major outbreaks that occurred in the 1980s and 1990s. Bottlenose dolphins from Beaufort, North Carolina; St. Joseph Bay, Florida; and Cape May, New Jersey had anti‐DMV seroprevalences ranging from between 15% and 33% but those from Charleston, South Carolina and Sarasota Bay, Florida, sampled in recent years were largely negative. These latter groups are therefore now vulnerable to infection and could experience high mortality if exposed to CeMV. Sero‐surveys of this kind are therefore vital for assessing the risk of new and recurring viral outbreaks in coastal cetaceans.  相似文献   

17.
Harmful algal blooms (HABs), which can be lethal in marine species and cause illness in humans, are increasing worldwide. In the Gulf of Mexico, HABs of Karenia brevis produce neurotoxic brevetoxins that cause large‐scale marine mortality events. The long history of such blooms, combined with the potentially severe effects of exposure, may have produced a strong selective pressure for evolved resistance. Advances in next‐generation sequencing, in particular genotyping‐by‐sequencing, greatly enable the genomic study of such adaptation in natural populations. We used restriction site‐associated DNA (RAD) sequencing to investigate brevetoxicosis resistance in common bottlenose dolphins (Tursiops truncatus). To improve our understanding of the epidemiology and aetiology of brevetoxicosis and the potential for evolved resistance in an upper trophic level predator, we sequenced pools of genomic DNA from dolphins sampled from both coastal and estuarine populations in Florida and during multiple HAB‐associated mortality events. We sequenced 129 594 RAD loci and analysed 7431 single nucleotide polymorphisms (SNPs). The allele frequencies of many of these polymorphic loci differed significantly between live and dead dolphins. Some loci associated with survival showed patterns suggesting a common genetic‐based mechanism of resistance to brevetoxins in bottlenose dolphins along the Gulf coast of Florida, but others suggested regionally specific mechanisms of resistance or reflected differences among HABs. We identified candidate genes that may be the evolutionary target for brevetoxin resistance by searching the dolphin genome for genes adjacent to survival‐associated SNPs.  相似文献   

18.
Boat-based photoidentification surveys of bottlenose dolphins (Tursiops truncatus) were conducted from 1982 to 1989 in three discrete coastal study areas within the Southern California Bight: (1) Santa Barbara, California; (2) Orange County, California; (3) Ensenada, Baja California, Mexico. A total of 207 recognizable dolphins were identified in these three “secondary” study areas. These individuals were compared to 404 dolphins identified from 1981 to 1989 in our “primary” study area, San Diego, California, to examine the coastal movement patterns of bottlenose dolphins within the Southern California Bight. A high proportion of dolphins photographed in Santa Barbara (88%), Orange County (92%), and Ensenada (88%) were also photographed in San Diego. Fifty-eight percent (n= 120) of these 207 dolphins exhibited back-and-forth movements between study areas, with no evidence of site fidelity to any particular region. Minimum range estimates were 50 and 470 km. Minimum travel-speed estimates were 11-47 km/d, and all dolphin schools sighted during the study were within 1 km of the shore. These data suggest that bottlenose dolphins within the Southern California Bight are highly mobile within a relatively narrow coastal zone. Home-range dimensions and movement patterns for many vettebrate species are influenced, in part, by variation in food resources. The unique range characteristics documented during this study may reflect the highly dynamic nature of this coastal ecosystem and the associated patchy distribution of food resources available to these bottlenose dolphins.  相似文献   

19.
Long‐term studies often rely on natural markings for individual identification across time. The primary method for identification in small cetaceans relies on dorsal fin shape, scars, and other natural markings. However, dorsal fin markings can vary substantially over time and the dorsal fin can become unrecognizable after an encounter with a boat or shark. Although dorsal fins have the advantage in that they always break the water surface when the cetacean breathes, other physical features, such as body scars and pigmentation patterns can supplement. The goal of this study was to explore the use of dorso‐lateral pigment patterns to identify wild bottlenose dolphins. We employed photographic pigment matching tests to determine if pigmentation patterns showed (1) longitudinal consistency and (2) bilateral symmetry using a 30 yr photographic database of bottlenose dolphins (Tursiops aduncus). We compared experienced dolphin researchers and inexperienced undergraduate student subjects in their ability to accurately match images. Both experienced and inexperienced subjects correctly matched dolphin individuals at a rate significantly above chance, even though they only had 10 s to make the match. These results demonstrate that pigment patterns can be used to reliably identify individual wild bottlenose dolphins, and likely other small cetacean species at other sites.  相似文献   

20.
Observations of bottlenose dolphins ( Tursiops truncatus ) in Florida Bay, Florida, between 2002 and 2005 revealed the use of three distinct foraging tactics. The goal of this study was to identify ecological correlates with tactic use and describe the impact of foraging specializations on the overall habitat use and distribution patterns of this dolphin population. Foraging tactics showed strong association with contrasting environmental characteristics, primarily depth. Locations of two of these tactic groups were spatially repulsed. Analyses of sighting histories of individual dolphins observed at foraging events determined that dolphins which employed one tactic never employed the other, and vice versa . Although bottlenose dolphins have plastic foraging behaviors, dolphins in Florida Bay appear to specialize in one tactic and subsequently limit their overall distribution patterns to coincide with habitats that facilitate success using that foraging tactic. This study demonstrates how foraging behavior can be an ecological determinant of overall dolphin habitat use patterns and works to create spatial structure within a population due to consistent mapping of tactics onto environmental variation. These foraging specializations potentially impact the social and demographic patterns of this dolphin population. The possible evolutionary mechanisms behind this intraspecific variation, including resource limitation and social learning, are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号