首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the genetic structure of a single island population of the dioecious plant Silene dioica in the Skeppsvik Archipelago, Umeå, Sweden. The population is less than 10 years old and consists of approximately 700 individuals growing within an area of about 200 m2. Despite the small scale of the study, levels of genetic differentiation among contiguous patches are greater than or comparable to what is observed over larger scales in the archipelago. The results suggest that the small-scale structuring occurs during population expansion, soon after island colonization, and that the observed patterns of genetic differentiation can be attributed to the population being substructured into family groups. This family structure results from kin-structured dispersal processes (colonization and migration) as the population expands over the island. As plant densities increase over time, either spatial fusion or temporal fusion of patches reduce the among patch variation. These processes, however, do not completely eradicate the genetic differentiation established by the kin-structured dispersal processes. We discuss some implications of kin structuring for evolution through either kin or interdemic selection.  相似文献   

2.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

3.
I assessed the relationship between the level of inbreeding, F, and fitness, and the effects of nonmaternal and maternal components of inbreeding on fitness in Phacelia dubia. I conducted two generations of controlled crosses and tested the performance of the F2 progeny in field and artificial conditions covering the whole life cycle. Inbreeding significantly decreased the individual contribution of seeds to the next generation in the field, but this decrease apparently is not enough to explain the maintenance of gynodioecy. The inbred progeny contributes significantly to the population genetic structure of P. dubia. Fitness estimates and fitness components tended to decrease, usually monotonically, with F. However, nonmonotonic relationships were found in male fitness components and, in some families, in fitness estimates, seed production per fruit, and establishment. Most of the inbreeding depression takes place at the level of seed establishment in the field, but, in artificial conditions the effects of inbreeding were similar at fecundity and establishment. I studied maternal and nonmaternal components of inbreeding by testing the effects of the relatedness of maternal grandparents and parents on the performance of the progeny. Both components affected fitness. Inbreeding depression was conditioned by the level of inbreeding of the maternal plant, but this interaction varied at different fitness components. Also, the magnitude and even the direction of the relationship between fitness and F changed as a result of the combined effects of maternal and nonmaternal components of inbreeding. Such interactions can render convex or concave fitness functions, giving in the latter case the appearance of a false purging. Maternal effects of inbreeding can result from several processes: maternal investment perhaps with serial adjustments during seed development, purging of recessive deleterious genes, and nucleocytoplasmic interactions. These results illustrate the importance of maternal effects of inbreeding, and the complex effects of inbreeding on fitness. A full understanding of the fitness consequences of inbreeding and, therefore, their potential implications in the evolution of breeding systems, should take into account male and female components as well as transgenerational effects in the context of the particular environment in which fitness is evaluated.  相似文献   

4.
In a series of experiments conducted over two seasons, we used arrays of experimental populations to examine the effects of flower number and distance between patches on gene flow by pollen. For this study we used the dioecious, short-lived perennial plant Silene alba (Caryophyllaceae). This species lives in disturbed roadside and agricultural habitats and displays a weedy population dynamic with high colonization and extinction rates. The motivation for the study was to understand what factors may be influencing genetic connectedness among newly colonized populations within a regional metapopulation. By using experimental populations composed of genotypes homozygous at a diagnostic locus, it was possible to identify explicitly pollen movement into a focal patch as a function of flower number and distance to the nearest neighboring patch. Overall, the mean immigration rate (measured as the fraction of seeds sired by males outside the focal patch) at 20 m was just over 47%, whereas at 80 m immigration rates were less than 6%. In addition, by knowing the context in which each of these gene-flow events occurred, it was possible to understand some of the factors that influenced the exchange of genes. Both the number of flowers in the focal population (target) and in the neighboring populations (source) had a significant effect on the frequency of gene flow. Our experimental data also demonstrate that factors that influence gene flow at one spatial scale may not act in the same way at another. Specifically, the influence of target size and the relative size of the target and source patches on rates of gene flow depended on whether the patches were separated by 20 m or 80 m. These data suggest that the patterns of gene flow within a metapopulation system can be complex and may vary within a growing season.  相似文献   

5.
It is widely recognized that there are basic conflicts between the resource needs of a plant for paternal versus maternal functions. In dioecious species, these divergent demands, and the selection pressures they impose, can lead to the evolution of sexual dimorphism. The present study was conducted to assess the potential for the evolution of sexual dimorphism in Silene latifolia by evaluating the genetic variation and genetic correlation between characters and between the sexes for a range of growth and reproductive characters. Sexual dimorphism is largely restricted to reproductive characters, particularly flower number and flower size. A canonical correlation analysis revealed considerable intercorrelation between growth characters, such as germination date, height, and leaf size, and reproductive characters; plants that grow fast early on also flower earlier, and plants that produce big leaves also produce big flowers. There was genetic variation for several sexually dimorphic characters; much of the focus in this analysis was on flower size, particularly calyx diameter. Finally, genetic correlations within and between the sexes were found that limit the rate of evolutionary divergence between the sexes. The genetic results suggest that S. latifolia has been subject to divergent selection on the two sexes for a long period of time, bringing about a gradual fixation of sex-limited gene effects, so that the remaining genetic effects are expressed in both sexes. Genetic correlations between the sexes that arise from this residual variation impose limits on further evolutionary change.  相似文献   

6.
Gynodioecy, the co‐occurrence of females and hermaphrodites, is often due to conflicting interactions between cytoplasmic male sterility genes and nuclear restorers. Although gynodioecy often occurs in self‐compatible species, the effect of self‐pollination, inbreeding depression, and pollen limitation acting differently on females and hermaphrodites remains poorly known in the case of nuclear‐cytoplasmic gynodioecy (NCG). In this study, we model NCG in an infinite population and we study the effect of selfing rate, inbreeding depression, and pollen limitation on the maintenance of gynodioecy and on sex ratios at equilibrium. We found that selfing and inbreeding depression have a strong impact, which depends on whether restorer cost acts on male or female fitness. When cost affects male fitness, the strength of cost has no effect, whereas selfing and inbreeding depression only impact gynodioecy by modifying the value of the female advantage. When cost affects female fitness, selfing facilitates NCG and reduces the role of strength of the cost, even when no inbreeding depression occurs, whereas inbreeding depression globally restricts the maintenance of the polymorphism. Finally, we found that pollen limitation could additionally strongly modify the dynamic of gynodioecy. We discuss our findings in the light of empirical data available in gynodioecious species.  相似文献   

7.
Heavy metal tolerant Silene vulgaris plants, originating from different metalliferous sites in Germany and one in Ireland, were crossed to each other and to nontolerant plants from a nonmetalliferous site in The Netherlands. Analysis of the crosses suggested that there were two distinct major gene loci for zinc tolerance among a total of five tolerant populations. The tolerance loci for zinc, copper, and cadmium in the Irish plants were shown to be identical with those in the German populations. It is argued that the occurrence of common major genes for tolerance among different geographically isolated populations must have resulted from independent parallel evolution in local nontolerant ancestral populations. Each of the tolerances studied seems to be controlled by only a few specific major genes.  相似文献   

8.
A well-established theoretical relationship exists between genetic correlations between the sexes and the dynamics of response to sex-specific selection. The present study investigates the response to sex-specific selection for two sexually dimorphic traits that have been documented to be genetically variable, calyx diameter and flower number, in Silene latifolia. Following the establishment of a base generation with a known genetic background, selection lines were established and two generations of sex-specific selection were imposed. Calyx diameter responded directly to sex-specific selection, and the positive genetic correlation between the sexes was reflected in correlated responses in the sex that was not the basis for selection within a particular line. Flower number showed a more erratic response to sex-specific selection in that selection in some lines was initially in the wrong direction, that is, selection for a decrease in flower number resulted in an increase. These erratic responses were attributable to genotype-environment interaction as reflected in significant heteroscedasticity in variance among families. Correlated responses to selection in the sex that was not the immediate basis for selection indicated the possible existence of a negative genetic correlation between the sexes for this trait. These results test for the first time the impact of genetic correlations between the sexes on the evolutionary dynamics of sexually dimorphic traits in a plant species.  相似文献   

9.
The demographic consequences of one and two generations of selfing were examined in a gynodioecious population of rose clover (Trifolium hirtum). Seeds collected from a roadside population were used to create an experimental population that consisted of seeds of open-pollinated individuals (S0), and seeds obtained after one (S1) and two (S2) generations of selfing. Seeds from the three groups were equally likely to germinate. However, inbreeding effects were observed in the vigor and survivorship of the seedlings. The proportion of the transplanted seedlings that reached the reproductive stage was 0.42, 0.31, and 0.14 for the S0, S1, and S2 groups, indicating a reduction of 26% and 66% by one and two generations of selfing, respectively. Inbreeding effects on reproductive components of fitness were nonsignificant. Groups were compared by multiplicative fitness functions based on germination, survival to reproduction, and fecundity. The relative fitness of the S1 and S2 groups were 0.64 and 0.23 relative to the S0 group, representing a reduction in lifetime fitness of 36% and 77%, respectively. The differences in relative fitness among the groups were caused mainly by differences in survivorship. Thus, inbreeding depression is apparently an important factor in the maintenance of the gynodioecious breeding system in rose clover.  相似文献   

10.
Gynodioecious plant populations contain both hermaphrodite and female individuals. For females to be maintained they must compensate for their loss of reproductive fitness through pollen. Females may achieve compensation by producing more and/or higher quality seeds than hermaphrodites. In this study, I investigated the independent and interactive effects of maternal sexual identity and inbreeding level on fitness of the progeny of hermaphrodites and females of Sidalcea oregana ssp.spicata. Seeds produced by selling hermaphrodites and by outcrossing or sib-crossing hermaphrodites and females, were planted in the field and greenhouse. Maternal-sex effects were substantial at the juvenile stages of the life cycle; seeds of females germinated in higher proportions and produced seedlings that grew significantly faster. Inbreeding effects were manifested primarily at the adult stage of the life cycle. Outcrossed plants were significantly larger and produced more flowers per plant than sib-crossed and selfed plants growing in the greenhouse. Progeny of hermaphrodites and females appeared to respond similarly to sib-matings. The maternal-sex effects observed in Sidalcea may have been related to cytoplasmically inherited factors and could be a driving force in the maintenance of females. Inbreeding depression could play a role in determining the fitness of both sex morphs, if females experience biparental inbreeding in the field. Frequent inbreeding of hermaphrodites may not be necessary to explain the maintenance of gynodioecy in this species.  相似文献   

11.
Flowers frequently receive both self (S) and outcross (OC) pollen, but S pollen often sires proportionally fewer seeds. Failure of S pollen can reflect evolved mechanisms that promote outcrossing and/or inbreeding depression expressed during seed development. The relative importance of these two processes was investigated in Aquilegia caerulea, a self-compatible perennial herb. In the field I performed single-donor (S or OC) and mixed-donor (S plus OC) pollinations to compare the relative success of both pollen types at various stages from pollen germination to seed maturity. Single-donor S pollinations produced significantly fewer and lighter seeds (x decrease = 12% and 3%, respectively) than OC pollinations. Abortion rates differed by an average of 38% whereas fertilization rates differed by only 5%, indicating that most differences in seed number arose postzygotically. This suggests that inbreeding depression was responsible for most failure of S pollen. One prezygotic effect measured was that 10% fewer S than OC pollen tubes reached ovaries after 42 hr, suggesting S pollen might fertilize proportionately fewer ovules after mixed pollination. Using allozyme markers, I found mixed-donor pollinations produced significantly more and heavier outcrossed than selfed seeds. However, the proportion of selfed seed, fertilized ovules, and aborted seeds for mixed-donor fruits were each predictable from pollen performance in single-donor fruits, suggesting that differential paternity is best explained by inbreeding depression during seed development. Even given these similarities between mixed- and single-donor fruits in the relative performance of S and OC pollen, both individual seed weight and seed set were significantly higher in multiply-sired fruits.  相似文献   

12.
Variation in environmental or genetic quality leads to phenotypic variation in condition, but how much variation in fitness is created by this variation in condition? Using Drosophila melanogaster, we manipulated condition via alternative larval diets and then tested several key factors predicted to influence how much variation in fitness results from differences in condition. Specifically, we were interested in whether male and female fitness are affected equally by condition and whether the strength of selection on condition depends on the abundance of key resources limiting the reproductive output of each sex. We measured selection on condition in alternative assay contexts that varied in the abundance of adult food (a key resource for females) or in the abundance of females (a key resource for males). Overall, selection tended to be stronger on males than females. However, selection on males was weakened when the abundance of their key resource (females) was elevated. Increasing the abundance of the key resource for females (live yeast) elevated their reproductive output as expected but did not change the strength of selection in this sex. Instead, this manipulation increased selection on males, suggesting that this environmental factor indirectly affects selection on males via their interaction with females.  相似文献   

13.
Inbreeding depression was estimated from an outbreeding population of the freshwater snail Lymnaea peregra, on the basis of two successive generations of enforced selling and outcrossing, and 70 maternal lineages. Outcrossing was analyzed under two treatments, groups of two and five individuals. The fitness parameters measured included fecundity, growth, and survival. In the first generation, we contrasted three treatments (selfers vs. paired outcrossers and group outcrossers). Very similar results were obtained between the two outcrossing treatments. A strong self-fertilization depression (which includes parental fecundity and progeny fitness) was detected in the selling treatment (about 90%). In the second generation, there was again marked evidence for self-fertilization depression, with the highest contributions coming from parental fecundity and progeny hatching rate. Our results suggest that the decreased parental fecundity is a consequence of the mating system in the previous generation, although the role of partial self-incompatibility and the copulation behavior could not be ruled out. Hatching rate and early survival data are suggestive of purging of lethal mutations. Significant variation in fitness among selfing lineages was found for most fitness traits. Our experimental design also allowed to test for interactions among fitness loci. Only one trait of the nine studied behaved as expected under synergistic interactions. However we cannot rule out some purging during the experiment, which could have biased results towards linearity. Inbreeding depression was also inferred from the change of inbreeding level across generations in the same population. We obtained a value similar to the experimental estimate.  相似文献   

14.
Theory predicts that positive heterozygosity‐fitness correlations (HFCs) arise as a consequence of inbreeding, which is often assumed to have a strong impact in small, fragmented populations. Yet according to empirical data, HFC in such populations seem highly variable and unpredictable. We here discuss two overlooked phenomena that may contribute to this variation. First, in a small population, each generation may consist of a few families. This generates random correlations between particular alleles and fitness (AFCs, allele‐fitness correlations) and results in too liberal tests for HFC. Second, in some contexts, small populations receiving immigrants may be more impacted by outbreeding depression than by inbreeding depression, resulting in negative rather than positive HFC. We investigated these processes through a case study in tadpole cohorts of Pelodytes punctatus living in small ponds. We provide evidence for a strong family structure and significant AFC in this system, as well as an example of negative HFC. By simulations, we show that this negative HFC cannot be a spurious effect of family structure, and therefore reflects outbreeding depression in the studied population. Our example suggests that a detailed examination of AFC and HFC patterns can provide valuable insights into the internal genetic structure and sources of fitness variation in small populations.  相似文献   

15.
The effects of self-fertilization, within-population crosses (WPC) and between-population crosses (BPC) on progeny fitness were investigated in the greenhouse for Scabiosa columbaria populations of varying size. Plants grown from field collected seeds were hand pollinated to produce selfed, WPC, and BPC progeny. The performance of these progenies was examined throughout the entire life cycle. The different pollination treatments did not significantly affect germination, seedling-to-adult survival, flowering percentage and the number of flower heads. But severe inbreeding depression was demonstrated for biomass production, root development, adult survival, and seed set. Additionally, multiplicative fitness functions were calculated to compare relative fitnesses for progeny. On average, WPC progeny showed a more than 4-fold, and BPC progeny an almost 10-fold, advantage over selfed progeny, indicating that S. columbaria is highly susceptible to inbreeding. No clear relationship was found between population size and level of inbreeding depression, suggesting that the genetic load has not yet been reduced substantially in the small populations. A significant positive correlation was found between plant dry weight and total fitness. In two out of six populations, the differences between the effects of the pollination treatments on dry weight increased significantly when seedlings were grown under competitive conditions. This result is interpreted as an enhancement of inbreeding depression under these conditions. It is argued that improvement of the genetic exchange between populations may lower the probability of population extinction.  相似文献   

16.
If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.  相似文献   

17.
We determined the genetic basis of several traits related to overall fitness of Aquilegia caerulea, a perennial herb of the Rocky Mountains in western North America. To obtain measures of heritability relevant to the evolutionary potential of wild populations, we performed full and partial diallel crosses and studied progeny performance in the field. Based on a joint analysis of two designs with a total of 18 parents and 102 crosses, we detected significant maternal variance for seed mass and emergence time, but this component was negligible for later-expressed traits. Low heritability and evidence that maternal effects on seed mass are largely environmental suggest that in this population there is little evolutionary potential for change in seed mass under conditions experienced during the study. Seed mass varied depending on particular combinations of parents and cross direction. Such an interaction can have several different biological interpretations, including that particular maternal parents selectively provision embryos sired by particular pollen genotypes. Width of the first true leaf after 4 wk of growth and leaf size of juvenile plants at years one and two were significantly heritable and positively genetically correlated. Juvenile survival exhibited significant dominance variance, as expected from evidence of inbreeding depression in this trait. In contrast, for other traits that exhibit inbreeding depression in this population (seed mass and third-year leaf size), dominance variance was negligible.  相似文献   

18.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

19.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

20.
大豆光合日变化过程中气孔限制和非气孔限制的研究   总被引:10,自引:2,他引:10  
研究了在典型高温低湿天气下大豆光合日变化过程中气孔限制和非气孔限制的效应。大豆叶片在中午表现出严重的气孔关闭伴随着光合速率的大幅度下降,但中午光合速率下降期间,大豆叶片细胞间隙的CO_2浓度不但没有下降反而有所增加,同时气孔限制值也在下降。实验结果表明,大豆叶片的光合午休现象主要是因为大豆叶片的羧化效率、光合能力,RUBP再生能力的下降以及CO_2补偿点升高造成的。大豆叶片在中午时气孔导度的下降不是造成光合午休的原因,而是在特定环境中实现水分利用最优的一种对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号