首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tracking the response of forest ecosystems to climate change demands large (≥1 ha) monitoring plots that are repeatedly measured over long time frames and arranged across macro-ecological gradients. Continental scale networks of permanent forest plots have identified links between climate and carbon fluxes by monitoring trends in tree growth, mortality and recruitment. The relationship between tree growth and climate in Australia has been recently articulated through analysis of data from smaller forest plots, but conclusions were limited by (a) absence of data on recruitment and mortality, (b) exclusion of non-eucalypt species, and (c) lack of knowledge of stand age or disturbance histories. To remedy these gaps we established the Ausplots Forest Monitoring Network: a continental scale network of 48 1 ha permanent plots in highly productive tall eucalypt forests in the mature growth stage. These plots are distributed across cool temperate, Mediterranean, subtropical and tropical climates (mean annual precipitation 850 to 1900 mm per year; mean annual temperature 6 to 21°C). Aboveground carbon stocks (AGC) in these forests are dominated by eucalypts (90% of AGC) whilst non-eucalypts in the understorey dominated species diversity and tree abundance (84% of species; 60% of stems). Aboveground carbon stocks were negatively related to mean annual temperature, with forests at the warm end of the temperature range storing approximately half the amount of carbon as forests at the cool end of the temperature range. This may reflect thermal constraints on tree growth detected through other plot networks and physiological studies. Through common protocols and careful sampling design, the Ausplots Forest Monitoring Network will facilitate the integration of tall eucalypt forests into established global forest monitoring initiatives. In the context of projections of rapidly warming and drying climates in Australia, this plot network will enable detection of links between climate and growth, mortality and carbon dynamics of eucalypt forests.  相似文献   

2.
Abstract. Patterns of mortality, recruitment, and forest turnover were investigated using permanent plot data from temperate forests in 14 localities throughout New Zealand. Tree mortality and recruitment rates were calculated from tagged trees ≥ 10 cm diameter at 1.4 m on individual 400 m2 plots, and turnover rates were calculated as the mean of mortality and recruitment rates. Turnover rates (1.4% per year) were very similar to those recorded for tropical forests (i.e. 1.5% per year). As was shown in tropical forests, we also found significant relationships between forest turnover and species richness. In New Zealand forests there was also a decrease in species richness and turnover rates with increasing latitude. Although species richness is well known to decline with latitude, our study provides support for a possible link between seasonality and disturbance with tree turnover and species diversity. While tree mortality and recruitment rates were approximately in balance at some localities, in others there were imbalances between mortality and recruitment rates.  相似文献   

3.
Question: How do the diversity, size structure, and spatial pattern of woody species in a temperate (Mediterranean climate) forest compare to temperate and tropical forests? Location: Mixed evergreen coastal forest in the Santa Cruz Mountains, California, USA. Methods: We mapped, tagged, identified, and measured all woody stems (≥1 cm diameter) in a 6‐ha forest plot, following Center for Tropical Forest Science protocols. We compared patterns to those found in 14 tropical and 12 temperate forest plots. Results: The forest is dominated by Douglas‐fir (Pseudotsuga menziesii) and three species of Fagaceae (Quercus agrifolia, Q. parvula var. shrevei, and Lithocarpus densiflorus), and includes 31 woody species and 8180 individuals. Much of the diversity was in small‐diameter shrubs, treelets, and vines that have not been included in most other temperate forest plots because stems <5‐cm diameter had been excluded from study. The density of woody stems (1363 stems ha?1) was lower than that in all but one tropical plot. The density of large trees (diameter ≥30 cm) and basal area were higher than in any tropical plot. Stem density and basal area were similar to most other temperate plots, but were less than in low‐diversity conifer forests. Rare species were strongly aggregated, with the degree of aggregation decreasing with abundance so that the most common species were significantly more regular than random. Conclusions: The patterns raise questions about differences in structure and dynamics between tropical and temperate forests; these need to be confirmed with additional temperate zone mapped plots that include small‐diameter individuals.  相似文献   

4.
The biomass and dynamics of disturbed and degraded tropical forests have mostly been ignored in the recent scientific literature, partly because of a spotlight on old‐growth forests but also due to a lack of long‐term data from degraded forests. There is a pressing need to understand the rates and patterns of growth, mortality and recruitment in degraded forests, not only because they are increasing in area relative to old‐growth forests, but also due to their potential capacity to sequester large amounts of carbon dioxide from the atmosphere. This paper introduces a permanent forest plot network and database, FORMNET‐B (GIVD ID# NA‐BZ‐001), designed to study the long‐term dynamics of disturbed and degraded tropical forests in Belize, Central America.  相似文献   

5.
The influence of a population of the understorey woody bamboo Merostachys riedeliana and different flooding regimes on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil was examined. A forest section with an area of 1.6 ha composed of 71 adjacent plots was located on a slope ending at the river margin. The section was divided into five topographical sectors according to the mean duration of river floods. In 1991 and 1998 all trees with a diameter at the base of the trunk ≥ 5 cm were measured, identified and tagged, and all live bamboo culms were counted. Annualised estimates of the rates of tree mortality and recruitment, gain and loss of tree basal area, and change in bamboo density were calculated for each of the 71 plots and five topographical sectors as well as for diameter classes and tree species. To segregate patterns arising from spatially autocorrelated events, geostatistical analyses were used prior to statistical comparisons and correlations. In general, mortality rates were not compensated by recruitment rates but there was a net increase in basal area in all sectors, suggesting that the tree community as a whole was in a building phase. Tree community dynamics of the point bar forest (Depression and Levée sectors) differed from that of the upland forest (Ridgetop, Middle Slope and Lower Slope sectors) in the extremely high rates of gain in basal area. The predominant and specialised species, Inga vera and Salix humboldtiana, are probably favoured by relaxed competition in an environment stressed by long-lasting floods. In the upland forest, mortality rates were highest at the Middle Slope, particularly for smaller trees, while recruitment rates were lowest. As bamboo clumps were concentrated in this sector, the locally higher instability in the tree community probably resulted from the direct interference of bamboos. The density of bamboo culms in the upland forest was negatively correlated with the rates of tree recruitment and gain in basal area, and positively correlated with tree mortality rates. Bamboos therefore seemed to restrict the recruitment, growth and survival of trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
We developed an individual-based stochastic-empirical model to simulate the carbon dynamics of live and dead trees in a Central Amazon forest near Manaus, Brazil. The model is based on analyses of extensive field studies carried out on permanent forest inventory plots, and syntheses of published studies. New analyses included: (1) growth suppression of small trees, (2) maximum size (trunk base diameter) for 220 tree species, (3) the relationship between growth rate and wood density, and (4) the growth response of surviving trees to catastrophic mortality (from logging). The model simulates a forest inventory plot, and tracks recruitment, growth, and mortality of live trees, decomposition of dead trees (coarse litter), and how these processes vary with changing environmental conditions. Model predictions were tested against aggregated field data, and also compared with independent measurements including maximum tree age and coarse litter standing stocks. Spatial analyses demonstrated that a plot size of ~10 ha was required to accurately measure wood (live and dead) carbon balance. With the model accurately predicting relevant pools and fluxes, a number of model experiments were performed to predict forest carbon balance response to perturbations including: (1) increased productivity due to CO2 fertilization, (2) a single semi-catastrophic (10%) mortality event, (3) increased recruitment and mortality (turnover) rates, and (4) the combined effects of increased turnover, increased tree growth rates, and decreased mean wood density of new recruits. Results demonstrated that carbon accumulation over the past few decades observed on tropical forest inventory plots (~0.5 Mg C ha–1 year–1) is not likely caused by CO2 fertilization. A maximum 25% increase in woody tissue productivity with a doubling of atmospheric CO2 only resulted in an accumulation rate of 0.05 Mg C ha–1 year–1 for the period 1980–2020 for a Central Amazon forest, or an order of magnitude less than observed on the inventory plots. In contrast, model parameterization based on extensive data from a logging experiment demonstrated a rapid increase in tree growth following disturbance, which could be misinterpreted as carbon sequestration if changes in coarse litter stocks were not considered. Combined results demonstrated that predictions of changes in forest carbon balance during the twenty-first century are highly dependent on assumptions of tree response to various perturbations, and underscores the importance of a close coupling of model and field investigations.  相似文献   

7.
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.  相似文献   

8.
Abstract. Density‐dependence in tree population dynamics has seldom been examined in dry tropical forests. Using long‐term data from a large permanent plot, this study examined 16 common species in a dry tropical forest in southern India for density‐dependence. Employing quadrat‐based analyses, correlations of mortality, recruitment and population change with tree densities were examined. Mortality in 1–10 cm diameter trees was largely negatively correlated with conspecific density, whereas mortality in > 10 cm diameter trees was positively correlated. Mortality was, however, largely unaffected by the basal area and abundance of heterospecific trees. Recruitment was poor in most species, but in Lagerstroemia microcarpa (Lythraceae), Tectona grandis (Verbenaceae) and Cassia fistula (Fabaceae), species that recruited well, strong negative correlations of recruitment with conspecific basal area and abundance were found. In a few other species that could be tested, recruitment was again negatively correlated with conspecific density. In Lagerstroemia, recruitment was positively correlated with the basal area and abundance of heterospecific trees, but these correlations were non‐significant in other species. Similarly, although the rates of population change were negatively correlated with conspecific density they were positive when dry‐season ground fires occurred in the plot. Thus, the observed positive density‐dependence in large‐tree mortality and the negative density‐dependence in recruitment in many species were such that could potentially regulate tree populations. However, repeated fires influenced density‐dependence in the rates of population change in a way that could promote a few common species in the tree community.  相似文献   

9.
Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging.  相似文献   

10.
择伐对吉林蛟河阔叶红松林群落结构及动态的影响   总被引:1,自引:0,他引:1  
范春雨  张春雨  赵秀海 《生态学报》2017,37(20):6668-6678
科学的森林经营能够优化林分结构,是调控森林生产力和生物多样性的有效手段。择伐作为森林经营的重要方式之一,其对森林结构以及群落动态的影响一直未有定论,因此迫切需要利用更加全面的数据对择伐及伐后林分特征的变化进行长期监测。根据森林大样地建立规范,2010年在吉林蛟河建立了42hm~2阔叶红松林动态监测样地,2011年冬季截取部分面积进行择伐经营,以经营样地为研究对象,运用数值变量描述采伐活动并分析择伐前后群落结构的变化;同时结合2015年的二次调查数据,以立地条件基本一致的对照样地为参照,比较林分水平和物种水平上死亡率、更新率的差异,并利用线性混合效应模型探究择伐活动对个体径向生长的影响。研究结果显示:经营样地的择伐强度为5.4%,受采伐干扰影响较大的物种主要包括色木槭、白牛槭、裂叶榆、胡桃楸、千金榆、水曲柳以及紫椴,采伐主要集中于林冠层树种,亚林层和灌木层个体很少涉及。择伐前后物种组成、径级结构等并未发生明显改变。5年间,经营样地和对照样地的林分密度都降低,对比对照样地,经营样地的死亡率较低,但其更新状况并未优于对照样地。从胸高断面积来看,经营样地整体的年平均生长量高于对照样地,表明择伐导致的稀疏对个体生长和存活起到了一定的促进作用。将采伐强度纳入线性混合效应模型中分析发现,胸径始终是影响个体生长的最重要因素,其次是树木个体之间的非对称竞争;采伐所涉及到的7个主要树种的年平均生长量均高于对照样地,但仅有紫椴的径向生长表现出对采伐干扰的显著响应。综合来看,低强度择伐对群落结构和动态的影响较小,不同物种的径向生长对择伐的响应存在一定差异。  相似文献   

11.
Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm−3) was significantly lower than in primary forest plots (0.71 g cm−3), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing forest carbon balance.  相似文献   

12.
13.
Abstract In late 2001 a category 3 cyclone impacted forest plots that were established in Tonga in 1995, and additionally, one plot was accidentally burned by an escaped land‐clearing fire. Subsequent surveys provide observations of 10 years of forest dynamics in this poorly studied region, and the first reported observations of large interannual variation in juvenile (seedling and sapling) abundance in the western tropical Pacific. The severely disturbed (burned) plot was initially colonized by a non‐native early pioneer, Carica papaya L., but 3.5 years later a native pioneer, Macaranga harveyana (Muell. Arg.) Muell. Arg., was the most abundant tree species. The seedling layer included some long‐lived pioneers and shade‐tolerant species. Two mature forest plots affected only by the cyclone changed very little over a decade. Late‐successional shade‐tolerant species that dominated the overstory were also abundant as seedlings and saplings. This is in contrast with a 30‐ to 40‐year‐old, formerly cultivated, secondary forest plot that still shows no recruitment of late‐successional dominants, in spite of the proximity of remnant forest patches. This study suggests differing pathways of succession following shifting cultivation versus cyclone and fire disturbances in Tonga. Land use legacies appear to have a long‐lasting effect on community composition.  相似文献   

14.
Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m2 ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m2) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest.  相似文献   

15.
Abstract. Structural dynamics of a natural tropical seasonal – mixed deciduous – forest were studied over a 4-yr period at Mae Klong Watershed Research Station, Kanchanaburi Province, western Thailand, with particular reference to the role of forest fires and undergrowth bamboos. All trees > 5 cm DBH in a permanent plot of 200 m × 200 m were censused every two years from 1992 to 1996. The forest was characterized by a low stem density and basal area and relatively high species diversity. Both the bamboo undergrowth and frequent forest fires could be dominant factors that prevent continuous regeneration. Recruitment, mortality, gain (growth of survival tree plus ingrowth) and loss in basal area (by tree death) during the four years were 6.70%/yr, 2.91%/yr, 1.22%/yr and 1.34%/yr, respectively. Mortality was size dependent; middle size trees (30–50 cm) had the lowest mortality, while the smallest (5–10 cm) had the highest mortality. Tree recruitment was observed particularly in the first two years, mostly in the area where die-back of undergrowth bamboo occurred. The bias of the spatial distribution of recruitment to the area of bamboo die-back was significant and stronger than that to the forest canopy gaps. Successful regeneration of trees which survive competition with other herbs and trees after dieback of bamboo could occur when repeated forest fires did not occur in subsequent years. It is suggested that both the fire disturbance regime and bamboo life-cycle greatly influence the structure and dynamics of this seasonal tropical forest.  相似文献   

16.
Characteristics of giant panda herbivory sites and clonal regeneration of an arrow bamboo Fargesia qinlingensis following giant panda grazing were studied in the Qinling Mountains of China. Three types of plots were located in a pandas’ summer habitat in 2002: herbivory (naturally grazed by giant pandas), clipped (simulated panda herbivory), and control. Average area of herbivory sites was 2.92 m2 and average distance from herbivory sites to the closest tree (dbh > 10 cm) was 1.0 m. Pandas avoided thin bamboo culms with basal diameters <5 mm. Average height of stumps of culms grazed by panda was 0.67 m and average density of grazed culms was 9.0 culms m−2. Annual culm mortality rate was significantly greater in herbivory and clipped plots than in control plots while annual recruitment rate was not significantly different among the three plot types in 2003. Neither recruitment rate nor mortality rate were significantly different among the three plot types in 2004. Annual recruitment rate was significantly greater than annual mortality rate only in control plots in both 2003 and 2004, suggesting static ramet dynamics in disturbed plots (herbivory and clipped). Density of new shoots was not significantly different, but basal diameter of new shoots was significantly less in herbivory plots compared to control plots in 2002. Differences of annual mortality rate and growth of new shoots found between control plots and herbivory plots suggest that clonal regeneration of F. qinlingensis culms was negatively affected by giant panda grazing. Therefore, no evidence of a clonal integration compensatory response to panda herbivory was found in F. qinlingensis.  相似文献   

17.
Abstract. Changes in woody vegetation were examined over eight years, using a 1.05-ha permanent plot in which the location of every shrub and tree > 1m height was mapped. There was little change in the overstory vegetation, as expected for an old-growth forest. Much greater change occurred in the understory, primarily related to a 40 % increase in density. Differences occurred among species in the under-story, as Acer saccharum and Prunus serotina increased and Fraxinus americana and Fagus grandifolia decreased. Canopy gap dynamics are implicated in differences among species in the establishment and growth of individuals in the understory and their recruitment into the overstory. It is concluded that because understory is temporally variable, overstory recruitment from the understory may take different courses at different times in the same forest.  相似文献   

18.
The impact of human disturbance on colonisation dynamics of vascular epiphytes is poorly known. We studied abundance, diversity and floristic composition of epiphyte seedling establishing on isolated and adjacent forest trees in a tropical montane landscape. All vascular epiphytes were removed from plots on the trunk bases of Piptocoma discolor. Newly established epiphyte seedlings were recorded after 2 years, and their survival after another year. Seedling density, total richness at family and genus level, and the number of families and genera per plot were significantly reduced on isolated trees relative to forest trees. Seedling assemblages on trunks of forest trees were dominated by hygrophytic understorey ferns, those on isolated trees by xerotolerant canopy taxa. Colonisation probability on isolated trees was significantly higher for plots closer to forest but not for plots with greater canopy or bryophyte cover. Seedling mortality on isolated trees was significantly higher for mesophytic than for xerotolerant taxa. Our results show that altered recruitment can explain the long-term impoverishment of post-juvenile epiphyte assemblages on isolated remnant trees. We attribute these changes to a combination of dispersal constraints and the harsher microclimate documented by measurements of temperature and humidity. Although isolated trees in anthropogenic landscapes are considered key structures for the maintenance of forest biodiversity in many aspects, our results show that their value for the conservation of epiphytes can be limited. We suggest that abiotic seedling requirements will increasingly constitute a bottleneck for the persistence of vascular epiphytes in the face of ongoing habitat alteration and atmospheric warming.  相似文献   

19.
Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane. No differences in N and P levels were found in pit or forest soils under two trees with N–fixing symbionts (Inga laurina and Ormosia krugii) compared to soils under a tree species without N–fixing sym–bionts (Casearia arborea), but other soil variables (Al, Fe, K) did vary by tree species. Forest plots had greater species richness of seedlings (<10 cm tall) and saplings (10–100 cm tall) than plots in the soil pits (and greater sapling densities), but seedling densities were similar between plot types. Species richness and seedling densities did not vary among plots associated with the three tree species, but some saplings were more abundant under trees of the same species. Pit size did not affect species richness or seedling and sapling densities. Recruitment of young Cecropia schreberiana trees (>5 m tall) 45 months after the hurricane was entirely from the soil pits, with no tree recruitment from forest plots. Larger soil pits had more tree recruitment than smaller pits. Defoliation of the forest by the hurricane created a large but temporary increase in light availability. Recruitment of C. schreberiana to the canopy occurred in gaps created by the treefall pits that had lower soil nutrients but provided a longer–term increase in light availability. Treefall pits also significantly altered the recruitment and mortality of many understory species in the Puerto Rican rain forest but did not alter species richness.  相似文献   

20.
Disturbances play an important role in forest dynamics across the globe. Researchers have mainly focused on the temporal context of disturbances, but have largely ignored the spatial patterns of tree recruitment they create. Geostatistical tools enable the analysis of spatial patterns and variability in tropical forest disturbance histories. Here, we examine the potential of combining dendroecological analysis and spatial statistics to reconstruct the disturbance history of a seasonal dry evergreen tropical forest plot at the Huai Kha Khaeng Wildlife Sanctuary (HKK), western Thailand. We used tree‐ring‐derived age estimates for 70 individuals of the shade‐intolerant pioneer species Melia azederach (Meliaceae) and tree locations across a 316‐ha study plot to identify the timing and spatial extent of past disturbances. Although the age distribution for Melia suggested that regeneration had been continuous over the past 60 yr, spatial analyses (mark correlation function and kriging) demonstrated the presence of three spatially discrete age cohorts. Two of these cohorts suggested a severe disturbance ~20 yr before present. A third cohort appears to have established ~50 years ago. Using historical records, we conclude that fire disturbance is the most likely disturbance factor affecting HKK. Nevertheless, we do not rule out other disturbance factors. The combined application of tree‐ring analysis and spatial statistics as applied in this study could be readily applied to reconstruct disturbance histories in other tropical regions where tree species with annual growth rings are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号