首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivory by domestic and wild ungulates is a major driver of global vegetation dynamics. However, grazing is not considered in dynamic global vegetation models, or more generally in studies of the effects of environmental change on ecosystems at regional to global scale. An obstacle to this is a lack of empirical tests of several hypotheses linking plant traits with grazing. We, therefore, set out to test whether some widely recognized trait responses to grazing are consistent at the global level. We conducted a meta‐analysis of plant trait responses to grazing, based on 197 studies from all major regions of the world, and using six major conceptual models of trait response to grazing as a framework. Data were available for seven plant traits: life history, canopy height, habit, architecture, growth form (forb, graminoid, herbaceous legume, woody), palatability, and geographic origin. Covariates were precipitation and evolutionary history of herbivory. Overall, grazing favoured annual over perennial plants, short plants over tall plants, prostrate over erect plants, and stoloniferous and rosette architecture over tussock architecture. There was no consistent effect of grazing on growth form. Some response patterns were modified by particular combinations of precipitation and history of herbivory. Climatic and historical contexts are therefore essential for understanding plant trait responses to grazing. Our study identifies some key traits to be incorporated into plant functional classifications for the explicit consideration of grazing into global vegetation models used in global change research. Importantly, our results suggest that plant functional type classifications and response rules need to be specific to regions with different climate and herbivory history.  相似文献   

2.
Plant functional response traits, which consistently respond to the environment, are useful for identifying drivers of vegetation change, particularly in response to disturbance gradients. Similarly, functional diversity indices have proven useful for investigating processes governing community assembly, particularly patterns of functional convergence/divergence. This study investigated the functional ecology of biodiverse, seminatural coastal grasslands (Scottish machair) at the national scale. We examined temporal shifts in functional response traits and functional diversity metrics using a series of null model, multivariate and regression analyses. The aim was to link temporal shifts in traits and diversity metrics to environmental variables in which to gauge the contribution of landuse change to plant functional composition and processes governing plant assembly. We observed significant shifts in the composition of 8 out of 12 functional response traits at the national scale, whereas at the regional scale all traits displayed at least one significant shift. Ordination of response traits found PC axis 1 (accounting for 39% of the variation) to be positively correlated to vegetation height and negatively correlated to specific leaf area, similar to that expected along a disturbance gradient. Significant changes in functional diversity indices were also observed at both national and regional scales, with varying convergence/divergence patterns observed across individual regions. We found functional richness (t = 4.87, p < 0.001) and divergence (t = 9.3, p < 0.001) to increase along PC axis 1, suggesting greater convergence and lower divergence along a disturbance gradient. This study demonstrates the potential for using functional diversity indices in combination with response traits as a sensitive method for detecting landuse change and its impacts on biodiversity. We conclude that landuse change, particularly management declines and intensification is a major driver governing change among the functional composition and functional diversity for machair grasslands, influencing convergence/divergence patterns, and subsequently community assembly processes.  相似文献   

3.
4.
Identifying patterns and drivers of plant community assembly has long been a central issue in ecology. Many studies have explored the above questions using a trait‐based approach; however, there are still unknowns around how patterns of plant functional traits vary with environmental gradients. In this study, the responses of individual and multivariate trait dispersions of 134 species to soil resource availability were examined based on correlational analysis and torus‐translation tests across four spatial scales in a subtropical forest, China. Results indicated that different degrees of soil resource availability had different effects on trait dispersions. Specifically, limited resource (available phosphorus) showed negative relationships with trait dispersions, non‐limited resource (available potassium) showed positive relationships with trait dispersions, and saturated resource (available nitrogen) had no effect on trait dispersions. Moreover, compared with the stem (wood density) and architectural trait (maximum height), we found that leaf functional traits can well reflect the response of plants to nutrient gradients. Lastly, the spatial scale only affected the magnitude but not the direction of the correlations between trait dispersions and environmental gradients. Overall, the results highlight the importance of soil resource availability and spatial scale in understanding how plant functional traits respond to environmental gradients.  相似文献   

5.
Abstract. Four classes of functional and morphological plant traits – established strategies (the CSR scheme sensu Grime 1979), life‐forms (sensu Raunkiaer 1934), morphology, and regenerative strategies – are used as tools for explaining vegetation gradients at summer farms in the mountains of western Norway. These farms are assembly points for free‐ranging domestic grazers, and differ floristically and ecologically from the surrounding heath or woodland vegetation. DCA and TWINSPAN are used to relate major gradients in a floristic data set from 12 summer farms to two sets of explanatory variables: (1) environmental variables representing physical factors, plot position, soils, and land use, and (2) the 4 classification schemes. The main floristic gradient parallels a spatial gradient from the centres of the farms to the surrounding vegetation. A functional interpretation based on the concurrent use of the 2 sets of explanatory variables suggests that the gradient is one of decreasing disturbance and increasing environmental stress caused by decreasing grazing and manure effects away from farms. Partial CCA is used to investigate the relationships between the 4 functional/morphological plant trait classes. The 4 classification schemes are partially redundant, and do not represent different trends of specialization within the landscape. There is no strong evidence for decoupling of the traits of the vegetative and regenerative phases within the data. The combination of general process‐based theories and specific plant attribute responses enhances the generality and interpretability of the study.  相似文献   

6.
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.  相似文献   

7.
Functional trait composition is increasingly recognized as key to better understand and predict community responses to environmental gradients. Predictive approaches traditionally model the weighted mean trait values of communities (CWMs) as a function of environmental gradients. However, most approaches treat traits as independent regardless of known tradeoffs between them, which could lead to spurious predictions. To address this issue, we suggest jointly modeling a suit of functional traits along environmental gradients while accounting for relationships between traits. We use generalized additive mixed effect models to predict the functional composition of alpine grasslands in the Guisane Valley (France). We demonstrate that, compared to traditional approaches, joint trait models explain considerable amounts of variation in CWMs, yield less uncertainty in trait CWM predictions and provide more realistic spatial projections when extrapolating to novel environmental conditions. Modeling traits and their co‐variation jointly is an alternative and superior approach to predicting traits independently. Additionally, compared to a ‘predict first, assemble later’ approach that estimates trait CWMs post hoc based on stacked species distribution models, our ‘assemble first, predict later’ approach directly models trait‐responses along environmental gradients, and does not require data and models on species’ distributions, but only mean functional trait values per community plot. This highlights the great potential of joint trait modeling approaches in large‐scale mapping applications, such as spatial projections of the functional composition of vegetation and associated ecosystem services as a response to contemporary global change.  相似文献   

8.
Abstract. Plant functional traits and types are useful concepts in relation to disturbance responses of natural and managed ecosystems. To explore their applicability in greater depth, a set of 12 papers presents a broad range of issues from methodologies to the results of particular trait studies in the field, and modelling approaches. So far, empirical studies have only allowed us to identify a few functional traits that are consistently associated with disturbance. To determine the trait variations associated with climate, disturbance history and current disturbance regime as well as the interactions between these factors, global-scale comparisons of numerous individual studies are required. Significant advances toward this ambitious goal are presented in these papers, and include: (1) the articulation of experimental and analytical methodologies for individual studies that could usefully contribute to a global comparison; (2) the identification of core traits that can be used in the further search for disturbance-related traits common to a range of environments; (3) further information on vegetation response to disturbance in terms of trait representation, and the identification of attribute syndromes; (4) the identification of issues for modelling disturbance dynamics using functional types.  相似文献   

9.
Ecological communities and their response to environmental gradients are increasingly being described by various measures of trait composition. Aggregated trait averages (i.e. averages of trait values of constituent species, weighted by species proportions) are popular indices reflecting the functional characteristics of locally dominant species. Because the variation of these indices along environmental gradients can be caused by both species turnover and intraspecific trait variability, it is necessary to disentangle the role of both components to community variability. For quantitative traits, trait averages can be calculated from ‘fixed’ trait values (i.e. a single mean trait value for individual species used for all habitats where the species is found) or trait values for individual species specific to each plot, or habitat, where the species is found. Changes in fixed averages across environments reflect species turnover, while changes in specific traits reflect both species turnover and within‐species variability in traits. Here we suggest a practical method (accompanied by a set of R functions) that, by combining ‘fixed’ and ‘specific averages’, disentangles the effect of species turnover, intraspecific trait variability, and their covariation. These effects can be further decomposed into parts ascribed to individual explanatory variables (i.e. treatments or environmental gradients considered). The method is illustrated with a case study from a factorial mowing and fertilization experiment in a meadow in South Bohemia. Results show that the variability decomposition differs markedly among traits studied (height, Specific Leaf Area, Leaf N, P, C concentrations, leaf and stem dry matter content), both according to the relative importance of species turnover and intraspecific variability, and also according to their response to experimental factors. Both the effect of intraspecific trait variability and species turnover must be taken into account when assessing the functional role of community trait structure. Neglecting intraspecific trait variability across habitats often results in underestimating the response of communities to environmental changes.  相似文献   

10.
植物功能性状研究进展   总被引:18,自引:0,他引:18       下载免费PDF全文
植物功能性状是指植物体具有的与其定植、存活、生长和死亡紧密相关的一系列核心植物属性,且这些属性能够显著影响生态系统功能,并能够反映植被对环境变化的响应.越来越多的研究表明,相比大多数基于植物分类和数量的研究,植物功能性状在种群、群落和生态系统尺度上,都已成为解决重要生态学问题的可靠途径.本文回顾了植物功能性状研究的发展历程,总结了近10年来基于植物功能性状研究的前沿科学问题,包括功能性状的全球分布格局和内在关联,沿环境梯度的变化规律,功能多样性的定义及应用,与群落物种共存机制和群落动态变化的关系,与系统发育的关系,对生态系统功能的影响以及对各类干扰的影响和响应.尽管功能性状研究已经延伸到生态学领域的各个方面,有力推动了各个前沿科学问题的研究发展,仍然有很多值得关注和着重研究的方向.本文也对未来基于植物功能性状的研究,从性状测量和选取、研究方法以及研究方向上提出了展望,并指出,在当前全球气候变化背景下,功能性状也可应用于指导生物多样性保护和生态系统管理政策的制定.  相似文献   

11.
Community assembly processes is the primary focus of community ecology. Using phylogenetic‐based and functional trait‐based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits’ variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis. Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle‐ and low‐altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large‐scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.  相似文献   

12.
13.
Despite decades of study, the relative importance of niche‐based versus neutral processes in community assembly remains largely ambiguous. Recent work suggests niche‐based processes are more easily detectable at coarser spatial scales, while neutrality dominates at finer scales. Analyses of functional traits with multi‐year multi‐site biodiversity inventories may provide deeper insights into assembly processes and the effects of spatial scale. We examined associations between community composition, species functional traits, and environmental conditions for plant communities in the Kouga‐Baviaanskloof region, an area within South Africa's Cape Floristic Region (CFR) containing high α and β diversity. This region contains strong climatic gradients and topographic heterogeneity, and is comprised of distinct vegetation classes with varying fire histories, making it an ideal location to assess the role of niche‐based environmental filtering on community composition by examining how traits vary with environment. We combined functional trait measurements for over 300 species with observations from vegetation surveys carried out in 1991/1992 and repeated in 2011/2012. We applied redundancy analysis, quantile regression, and null model tests to examine trends in species turnover and functional traits along environmental gradients in space and through time. Functional trait values were weakly associated with most spatial environmental gradients and only showed trends with respect to vegetation class and time since fire. However, survey plots showed greater compositional and functional stability through time than expected based on null models. Taken together, we found clear evidence for functional distinctions between vegetation classes, suggesting strong environmental filtering at this scale, most likely driven by fire dynamics. In contrast, there was little evidence of filtering effects along environmental gradients within vegetation classes, suggesting that assembly processes are largely neutral at this scale, likely the result of very high functional redundancy among species in the regional species pool.  相似文献   

14.
Predictions of how vegetation responds to spatial and temporal differences in climate rely on established links with plant functional traits and vegetation types that can be encoded into Dynamic Global Vegetation Models. Individual traits have been linked to climate at species level and at community level within regions. However, a recent global assessment of aggregated community level traits found unexpectedly weak links with macroclimate, bringing into question broadscale trait–climate associations and implicating local-scale environmental differences in the filtering of communities. To further evaluate patterns in light of these somewhat contradictory results, we quantified the power of macro-environmental variables to explain aggregated plant community traits, taking advantage of new trait data for leaf area, plant height and seed mass combined with a national survey that records cover-abundance using consistent methods for a large number of plots across Australia. In contrast to the global study, we found that abundance-weighted community mean and variance of leaf area and maximum height were correlated with macroclimate. Height and leaf area were highest in wet (especially warm, wet) environments, with actual evapotranspiration explaining 30% of variation in leaf area and 26% in maximum height. Seed mass was weakly related to environment, with no variable explaining more than 5% of variance. Considering all three traits together in a redundancy analysis, the complete set of environmental variables explained 43% of variation in site-mean traits and 29% of within-site trait variance. While significant trait variation remains unexplained, the trait–environment relationships reported here suggest climatically-driven filtering plays a strong role in assembling these vegetation communities. Regional assessments using standardised species abundances can therefore be used to predict aspects of vegetation function. Our quantification of plant community trait patterns along macroclimatic gradients at continental scale thereby contributes a much-needed functional basis for Australian vegetation.  相似文献   

15.
王芸芸  郝占庆 《生物多样性》2022,30(7):22065-349
性系统是被子植物繁育系统的核心, 决定着植物种群的遗传特征、进化方向与速度, 在种群动态、群落结构及生态系统的构建与维持中具有重要意义。本文回顾了被子植物性系统的发展历程及研究方向, 总结了近30年基于性系统研究的前沿科学问题, 包括性系统的多样性和进化、与其他功能性状的生态关联、沿环境梯度的分布格局及变化规律、与群落物种共存机制和群落动态的关系及其对干扰的响应。尽管有关植物性系统的研究已经延伸到生态学领域的诸多方面, 有力地推动了各方面的发展, 但仍有很多值得关注和需要着重研究的方向和问题。本文对未来基于植物性系统的研究方向等提出了展望, 并指出, 在当前全球气候变化背景下, 性系统可作为重要的功能性状应用于指导生物多样性保护和生态系统管理政策的制定。  相似文献   

16.
Congeneric species may coexist at fine spatial scales through niche differentiation, however, the magnitude to which the effects of functional traits and phylogenetic relatedness contribute to their distribution along elevational gradients remains understudied. To test the hypothesis that trait and elevational range overlap can affect local speciesʼ coexistence, we first compared phylogenetic relatedness and trait (including morphological traits and leaf elements) divergence among closely related species of Rhododendron L. on Yulong Mountain, China. We then assessed relationships between the overlap of multiple functional traits and the degree of elevational range overlap among species pairs in a phylogenetic context. We found that phylogeny was a good predictor for most functional traits, where closely related species showed higher trait similarity and occupied different elevational niches at our study site. Species pairs of R. subgen. Hymenanthes (Blume) K. Koch showed low elevational range overlap and some species pairs of R. subgen. Rhododendron showed obvious niche differentiation. Trait divergence is greater for species in R. subgen. Rhododendron, and it plays an important role between species pairs with low elevational range overlap. Trait convergent selection takes place between co-occurring closely related species that have high elevational range overlap, which share more functional trait space due to environmental filtering or ecological adaptation in more extreme habitats. Our results highlight the importance of evolutionary history and trait selection for species coexistence at fine ecological scales along environmental gradients.  相似文献   

17.
The relationships between functional traits and environmental gradients are useful to identify different community assembly processes. In this work, we used an approach based on functional traits to analyse if changes in hydroperiod and tree covers of ponds are relevant for local amphibian community assembly processes. Ephemeral ponds with low vegetation cover are expected to impose constraints on different species with particular trait combinations and, therefore, to exhibit communities with lower functional diversity than more stable ponds with greater tree cover. Sampling was conducted in 39 temporary ponds located along vegetation and hydroperiod gradients in the most arid portion of the Chaco ecoregion. Seven functional traits were measured in each species present in the regional pool. Associations between these traits and environmental gradients were detected using multivariate ordination techniques and permutation test (RLQ and fourth‐corner analyses respectively). Functional diversity indices were then calculated and related to variations in the environmental gradients. The results obtained allowed us to identify different sets of traits associated with hydroperiod and tree cover, suggesting that these environmental variables are relevant for structuring amphibian communities according to interspecific variations in functional traits from both, larval and adult stages. Contrary to our expectations, communities associated with more stable ponds and with greater tree cover exhibited lower functional diversity than expected by chance (and were the ponds with highest species richness). This result indicates that the reduction in relative importance of environmental restrictions imposed by a very short hydroperiod and the lack of tree cover, favours different species of the regional pool that are similar in several functional traits. Accordingly, communities associated with stable ponds with high tree cover exhibited high functional redundancy.  相似文献   

18.
Understanding how species assembly is influenced by the interplay of climate, local environmental conditions and human-caused disturbances remains a central question in ecology and conservation. Here, we assess how plant species abundance is determined by combinations of functional traits (ecological strategies) and interacting gradients of rainfall, soil conditions (fertility and field capacity) and chronic anthropogenic disturbance in a Caatinga dry tropical forest, Brazil. We tested for trait–environment relationships using multivariate methods (RLQ) accounting for groups of species sharing similar responses to gradients and similar expression of multiple traits (i.e. response groups). Overall, species’ abundances changed predictably in response to rainfall and soil fertility, and were mediated by functional traits, i.e. species with particular trait combinations tended to respond similarly to multifactorial conditions. Briefly, three ecological strategies emerged: species with low wood density and soft (i.e. lower dry matter content), thick leaves converged into a trait syndrome characterizing a drought-avoidance strategy through water storage. They were particularly abundant under extremely low precipitation and relatively high soil field capacity. Under conditions of increasing rainfall and decreasing soil field capacity, species with high wood density were favored, consistent with a drought-tolerance strategy. However, these species fell into two groups relative to leaf-investment: more conservative leaves (low SLA) on relatively fertile soils vs. thinner and softer (i.e. high SLA) leaves on unfertile soils. In seasonally dry tropical forests, low SLA on relatively fertile soils may represent a water conservation strategy. Unexpectedly, no ecological strategy emerged in response to disturbance. The patterns we uncovered help to understand the interplay between precipitation, soil fertility and anthropogenic disturbance in plant species filtering in seasonally dry tropical forests. Moreover, our results underline that impacts of future climate change will depend on how rainfall patterns covary with finer-scale environmental factors such as soil fertility and field capacity.  相似文献   

19.
Macromycetes are important for ecosystem functioning due to their role in the nutrient cycling, and their function as pathogens and mutualists. Diversity metrics based on functional traits are robust predictors of ecosystem functionality since they incorporate an evolutionary and ecologic background. We examined diversity patterns of macrofungi using functional trait-based metrics of diversity along an altitudinal gradient in a seasonally dry tropical forest in southern Mexico. Our findings show that: (1) functional diversity varies with elevation, relating more to climatic variables than to vegetation structure; (2) functional diversity indexes exhibited contrasting patterns, so measures reflecting heterogeneity on trait abundance and niche complementarity tend to increase with elevation, whereas the measure of trait evenness decreases; and (3) functional diversity patterns depend on the type of functional trait considered and how they respond to environmental conditions. Our results indicate that functional diversity analyses help understanding of how macrofungal communities respond to environmental variation.  相似文献   

20.
植物群落构建机制研究进展   总被引:25,自引:15,他引:10  
柴永福  岳明 《生态学报》2016,36(15):4557-4572
群落构建研究对于解释物种共存和物种多样性的维持是至关重要的,因此一直是生态学研究的中心论题。尽管近年来关于生态位和中性理论的验证研究已经取得了显著的成果,但对于局域群落构建机制的认识仍存在很大争议。随着统计和理论上的进步使得用功能性状和群落谱系结构解释群落构建机制变为可能,主要是通过验证共存物种的性状和谱系距离分布模式来实现。然而,谱系和功能性状不能相互替代,多种生物和非生物因子同时控制着群落构建,基于中性理论的扩散限制、基于生态位的环境过滤和竞争排斥等多个过程可能同时影响着群落的构建。所以,综合考虑多种方法和影响因素探讨植物群落的构建机制,对于预测和解释植被对干扰的响应,理解生物多样性维持机制有重要意义。试图在简要回顾群落构建理论及研究方法发展的基础上,梳理其最新研究进展,并探讨整合功能性状及群落谱系结构的研究方法,解释群落构建和物种多样性维持机制的可能途径。在结合功能性状和谱系结构研究群落构建时,除了考虑空间尺度、环境因子、植被类型外,还应该关注时间尺度、选择性状的种类和数量、性状的种内变异、以及人为干扰等因素对群落构建的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号