首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selection experiment was used to determine if levels of genetic variance in an ecologically important trait, desiccation resistance, were different in central and marginal populations. Four populations of Drosophila serrata were sampled from central and marginal areas of its distribution, along a 3000-km stretch of Australia's east coast. Rainfall patterns along this stretch of coastline change from a tropical cycle in the north to a temperate cycle in the south. Replicate lines from the four populations underwent selection for desiccation resistance for 14 generations. Realized heritabilities calculated after 10 and 14 generations of selection indicated that the four populations differed significantly in the level of genetic variation for desiccation resistance available to selection. Populations from the more southern marginal areas had lower realized heritabilities than more northern central populations. However, a corresponding increase in mean desiccation resistance toward the margin was not found. A mechanism by which D. serrata seemed to have responded to selection was a reduction in the extent that metabolic rate was increased when flies were exposed to low humidity. This response indicates genetic variation for the control of metabolic rate. In contrast, increased desiccation resistance was not associated with lipid or glycogen levels. Increased resistance to desiccation was accompanied by increased starvation resistance, but radiation resistance was not affected. Selection did not affect the degree that replicate lines or populations had diverged.  相似文献   

2.
The measurement of trade-offs may be complicated when selection exploits multiple avenues of adaptation or multiple life-cycle stages. We surveyed 10 populations of Drosophila melanogaster selected for increased resistance to starvation for 60 generations, their paired controls, and their mutual ancestors (a total of 30 outbred populations) for evidence of physiological and life-history trade-offs that span life-cycle stages. The directly selected lines showed an impressive response to starvation selection, with mature adult females resisting starvation death 4–6 times longer than unselected controls or ancestors—up to a maximum of almost 20 days. Starvation-selected flies are already 80% more resistant to starvation death than their controls immediately upon eclosion, suggesting that a significant portion of their selection response was owing to preadult growth and acquisition of metabolites relevant to the stress. These same lines exhibited significantly longer development and lower viability in the larval and pupal stages. Weight and lipid measurements on one of the starvation-selected treatments (SB1–5), its control populations (CB1–5), and their ancestor populations (B1–5) revealed three important findings. First, starvation resistance and lipid content were linearly correlated; second, larval lipid acquisition played a major role in the evolution of adult starvation resistance; finally, increased larval growth rate and lipid acquisition had a fitness cost exacted in reduced viability and slower development. This study implicates multiple life-cycle stages in the response to selection for the stress resistance of only one stage. Our starvation-selected populations illustrate a case that may be common in nature. Patterns of genetic correlation may prove misleading unless multiple pleiotropic interconnections are resolved.  相似文献   

3.
The way populations respond to selection can be altered when populations are acclimated prior to selection. To examine this possibility, the responses of replicate lines of Drosophila melanogaster and D. simulans to selection for increased resistance to cold were compared. Flies were selected without hardening or after they had been hardened by holding them at 4°C for one hour. The selection response in both species was much greater when flies were not cold-hardened. Cold resistance in both sets of selected lines reached a plateau after a few generations. Surprisingly, continued selection for increased resistance resulted in decreasing levels of resistance. This decrease was no longer evident after selection had been relaxed for a generation, suggesting cross-generation effects. The magnitude of the cross-generation effects increased with additional generations of selection. Cross-generation effects were also detected for fitness components. Relaxing selection for a generation increased fecundity, weight, viability, and development time. Comparisons of relaxed lines and control lines indicated that only fecundity was influenced by selection. Both sets of selected lines had a lower fecundity than control lines. Crosses between control and selected lines and among replicate selected lines indicated that this decrease in fecundity was not associated with inbreeding. The direct and correlated responses to selection for cold resistance can therefore be influenced by acclimation and cross-generation effects.  相似文献   

4.
Multiple-peak epistasis is one of the four premises that underlie Wright's shifting-balance theory of evolution. A selection experiment was conducted in an attempt to push different geographic populations to different fitness peaks as a correlated response to selection for an additively controlled character (desiccation resistance). Four populations of Drosophila serrata, sampled from central and marginal areas of its distribution along a 3000-km stretch of Australia's east coast, underwent selection for desiccation resistance for 14 generations. After selection had ceased, control lines from each of the populations were crossed to determine the amount of hybrid breakdown that existed before selection and selected lines were crossed to determine the amount of hybrid breakdown after selection. Hybrid breakdown was measured in three fitness traits: developmental time, viability, and fecundity. When the individual crosses were examined, virtually no evidence was found for hybrid breakdown between these populations. However, the level of hybrid breakdown in development time in the control lines increased as the distance between the populations in the field increased. This relationship was lost in the selected lines. Therefore, selection for desiccation resistance influenced the level of hybrid breakdown in a fitness trait, although selection may need to be maintained for longer than 14 generations if a new relationship between hybrid breakdown and distance is to be formed.  相似文献   

5.
Many traits studied in ecology and evolutionary biology change their expression in response to a continuously varying environmental factor. One well‐studied example are thermal performance curves (TPCs); continuous reaction norms that describe the relationship between organismal performance and temperature and are useful for understanding the trade‐offs involved in thermal adaptation. We characterized curves describing the thermal sensitivity of voluntary locomotor activity in a set of 66 spontaneous mutation accumulation lines in the fly Drosophila serrata. Factor‐analytic modeling of the mutational variance–covariance matrix, M , revealed support for three axes of mutational variation in males and two in females. These independent axes of mutational variance corresponded well to the major axes of TPC variation required for different types of thermal adaptation; “faster‐slower” representing changes in performance largely independent of temperature, and the “hotter‐colder” and “generalist‐specialist” axes, representing trade‐offs. In contrast to its near‐absence from standing variance in this species, a “faster‐slower” axis, accounted for most mutational variance (75% in males and 66% in females) suggesting selection may easily fix or remove these types of mutations in outbred populations. Axes resembling the “hotter‐colder” and “generalist‐specialist” modes of variation contributed less mutational variance but nonetheless point to an appreciable input of new mutations that may contribute to thermal adaptation.  相似文献   

6.
Species distributions are often constrained by climatic tolerances that are ultimately determined by evolutionary history and/or adaptive capacity, but these factors have rarely been partitioned. Here, we experimentally determined two key climatic niche traits (desiccation and cold resistance) for 92–95 Drosophila species and assessed their importance for geographic distributions, while controlling for acclimation, phylogeny, and spatial autocorrelation. Employing an array of phylogenetic analyses, we documented moderate‐to‐strong phylogenetic signal in both desiccation and cold resistance. Desiccation and cold resistance were clearly linked to species distributions because significant associations between traits and climatic variables persisted even after controlling for phylogeny. We used different methods to untangle whether phylogenetic signal reflected phylogenetically related species adapted to similar environments or alternatively phylogenetic inertia. For desiccation resistance, weak phylogenetic inertia was detected; ancestral trait reconstruction, however, revealed a deep divergence that could be traced back to the genus level. Despite drosophilids’ high evolutionary potential related to short generation times and high population sizes, cold resistance was found to have a moderate‐to‐high level of phylogenetic inertia, suggesting that evolutionary responses are likely to be slow. Together these findings suggest species distributions are governed by evolutionarily conservative climate responses, with limited scope for rapid adaptive responses to future climate change.  相似文献   

7.
8.
9.
Heritabilities and evolvabilities for morphological traits were compared between two environments in Drosophila melanogaster using parent-offspring comparisons. One of the environments was favorable. The other stressful environment involved a combination of repeated cold shocks, poor nutrition, and ethanol added to the medium, which markedly decreased viability. For wing traits, heritabilities were relatively lower in the stressful environment, while heritabilities for bristle traits were not influenced by conditions. Heritability changes were largely due to an increase in the environmental variance under stress, whereas levels of additive genetic variance were relatively constant. Evolvabilities were similar between environments except for crossvein length.  相似文献   

10.
The sex-ratio trait we describe here in Drosophila simulans results from X-linked meiotic drive. Males bearing a driving X chromosome can produce a large excess of females (about 90%) in their progeny. This is, however, rarely the case in the wild, where resistance factors, including autosomal suppressors and insensitive Y chromosomes, prevent the expression of the driver. In this study, we searched for drive and resistance factors in strains of Drosophila simulans collected all over the world. Driving X chromosomes were found in all populations whenever a good sample size was available. Their frequency may reach up to 60%. However, the presence of driving X chromosomes never results in an excess of females, due to the systematic co-occurrence of resistance factors. The highest frequencies of driving X chromosomes were observed in islands, while populations from East and Central Africa (the supposed center of origin of the species) showed the highest level of resistance. The geographical pattern of drive and resistance factors, as well as the results of crosses between strains from different geographical areas, suggest that the sex-ratio system described here has a unique and ancient origin in the species.  相似文献   

11.
Abstract In natural populations, organisms experience simultaneously biotic (e.g., competitors and parasites) and abiotic (e.g., temperature and humidity) stresses. Thus, species must have the capacity to respond to combinations of stressors. How does interaction between biotic and abiotic stress affect organismal performance? To address this question, I studied stress resistance of adult Drosophila melanogaster that survived parasitic attack (as larvae) by the parasitoid Asobara tabida. To determine the impact of genotype on stress resistance, I measured survival under desiccation and starvation of flies within isofemale (genetic) lines. Survivors of parasitism had slightly reduced survivorship compared to unparasitized relatives when both were unstressed, and this difference was exacerbated by desiccation and starvation. These results indicate multiple stressors can compound each other's individual negative effects on fitness. Moreover, isofemale lines differed in their sensitivity to environmental stress and to parasitism. Consequently, genotypic differences in sensitivity to stress may reflect differences in investment priorities between traits that promote survival over other life‐history characters.  相似文献   

12.
Resistance to environmental stress is one of the most important forces molding the distribution and abundance of species. We investigated the evolution of desiccation stress resistance using 20 outbred Drosophila melanogaster populations directly selected in the laboratory for adult desiccation resistance (D), postponed senescence (O), and their respective controls (C and B). Both aging and desiccation selection increased desiccation resistance relative to their controls, creating a spectrum of desiccation resistance levels across selection treatments. We employed an integrative approach, merging data on the life histories of these populations with a detailed physiology of water balance. The physiological basis of desiccation resistance may be mechanisms enhancing either resource conservation or resource acquisition and allocation. Desiccation-resistant populations had increased water and carbohydrate stores, and showed age-specific patterns of desiccation resistance consistent with the resource accumulation mechanism. A significant proportion of the resources relevant to resistance of the stress were accumulated in the larval stage. Males and females of desiccation-selected lines exhibited distinctly different patterns of desiccation resistance and resource acquisition, in a manner suggesting intersexual antagonism in the evolution of stress resistance. Preadult viability of stress-selected populations was lower than that of controls, and development was slowed. Our results suggest that there is a cost to preadult resource acquisition, pointing out a complex trade-off architecture involving characters distributed across distinct life-cycle stages.  相似文献   

13.
An artificial selection experiment for increased female starvation resistance employed five selected lines and five control lines of Drosophila melanogaster. Females responded to selection within the first five generations, but a substantial male response was not observed until starvation resistance was assessed at generation 15. By measuring respiration rate in selected and control lines, it was possible to test the hypothesis that reduced metabolic rate is a general mechanism for stress resistance. There was no association between starvation resistance and respiration rate and thus no support for the hypothesis. Studies using vertebrates have shown that starvation causes a decrease in intermediary metabolism enzyme activity, but this relationship is not well documented in invertebrates. In the present study, intermediary metabolism enzyme activities decreased in response to starvation in control-line females and males, and in selected-line males. However, the selected females showed no overall decrease in enzyme activities in response to starvation. One interpretation is that selected females evolved to resist the phenotypic impact of stress. The concept of “counter-impact selection” is discussed in relationship to the use of phenotypic manipulations for the study of evolution.  相似文献   

14.
Abstract The potential rate of evolution of resistance to natural enemies depends on the genetic variation present in the population and any trade-offs between resistance and other components of fitness. We measured clonal variation and covariation in pea aphids ( Acyrthosiphon pisum ) for resistance to two parasitoid species ( Aphidius ervi and A. eadyi ) and a fungal pathogen ( Erynia neoaphidis ). We found significant clonal variation in resistance to all three natural enemies. We tested the hypothesis that there might be trade-offs (negative covariation) in defensive ability against different natural enemies, but found no evidence for this. All correlations in defensive ability were positive, that between the two parasitoid species significantly so. Defensive ability was not correlated with fecundity. A number of aphid clones were completely resistant to one parasitoid ( A. eadyi ), but a subset of these failed to reproduce subsequently. We discuss the factors that might maintain clonal variation in natural enemy resistance.  相似文献   

15.
Responses to short-term selection for knockdown resistance to heat (37°C) in Drosophila melanogaster reared under stressful (high larval density) and nonstressful (low larval density) conditions were compared. No difference in selection response between density treatments was found. A test of heat resistance (39°C) after pretreatment (37°C) did not reveal an increase in survival for selected lines as compared to controls. Flies reared at high density had higher knockdown resistance throughout the experiment. Resistance to heat was not associated with body size.  相似文献   

16.
There have been very few genetic analyses of “natural” adaptations, that is, those not involving artificial selection or responses to human disturbance. Here we analyze the genetic basis of geographic variation in Drosophila melanogaster's resistance to parasitism by a wasp, Asobara tabida. Our results suggest that population differences in ability to encapsulate parasitoid eggs have a fairly simple genetic basis: 60% of the D. melanogaster genome plays no role in differences between resistant and susceptible populations. Instead, resistance gene(s) are restricted to chromosome two, and may be further restricted to the centromeric region of this chromosome. This finding suggests that natural adaptations—like many responses to artificial selection and human disturbance—sometimes have a simple genetic basis.  相似文献   

17.
Drosophila yakuba and D. santomea are sister species that differ in their levels of abdominal pigmentation; D. yakuba shows heavily pigmented posterior abdominal segments in both sexes, whereas D. santomea lacks dark pigment anywhere on its body. Using naturally collected lines, we demonstrate the existence of altitudinal variation in abdominal pigmentation in D. yakuba but not in D. santomea. We use the variation in pigmentation within D. yakuba and two body‐color mutants in D. yakuba to elucidate selective advantage of differences in pigmentation. Our results indicate that although differences in abdominal pigmentation have no effect on desiccation resistance, lighter pigmentation confers ultraviolet radiation resistance in this pair of species.  相似文献   

18.
Geographic variation in mitochondrial DNA (mtDNA) restriction sites was studied in the fox sparrow (Passerella iliaca). Seventy-eight haplotypes were found. Haplotypes fall into four phylogeographic groups that correspond to groups defined by plumage characters. The geographic distribution of these four groups does not appear congruent with mtDNA patterns in other vertebrates. Within each group, there is little geographic variation in mtDNA restriction sites, although there is geographic variation in plumage coloration and body size. The evolution of mtDNA diversity in fox sparrows seems best explained by vicariant events rather than isolation by distance. The mtDNA evidence suggests that Passerella megarhyncha and Passerella schistacea, two nonsister taxa that occur in western North America, have independently undergone bottlenecks. Hybridization is limited between all pairs of taxa except P. megarhyncha and P. schistacea, where mtDNA evidence suggests a narrow contact zone along the interface of the Great Basin and Sierra Nevada/Cascades. Morphometric characters intergrade over a broader area, suggesting that different processes are responsible for the two gradients. The occurrence of limited backcrossing among taxa suggests that cytoplasmic-nuclear incompatibility is lacking. The number of biological species would range from one to four, depending on the degree of hybridization tolerated. The mtDNA and plumage characters suggest four phylogenetic species: P. iliaca, P. megarhyncha, P. unalaschcensis, and P. schistacea.  相似文献   

19.
We report our studies of the effect of inbreeding on the response to selection for increased pupal weight in the flour beetle, Tribolium castaneum. We also report the effects of inbreeding and selection for pupal weight on the heritable variation in fitness and fitness components. We created replicate and independent inbred lines with F-values of 0.00, 0.375, and 0.672, by 0, 2, and 5 generations, respectively, of brother-sister mating of adult beetles from an outbred stock population. Subsequently, we imposed artificial within-family selection for increased pupal weight in each of 15 inbred lines for eight generations; each line had its own paired, unselected control. We compared the response to selection across the three levels of inbreeding with theoretical expectation, and investigated the effects of inbreeding and selection on fitness variation among families within all 30 selected and control lines. Among-line variation in pupal weight increased with increased inbreeding prior to selection but diminished with directional selection. Inbreeding reduced the realized heritability of pupal weight concordant with quantitative predictions of additive theory. Mean fitness, measured in several ways, declined with inbreeding and declined further with selection. In contrast, the genetic variation for fitness in the inbred and selected lines lines equalled or exceeded that of the outbred controls. Our results suggest that inbreeding and selection may affect traits in different ways depending on the relative amounts of additive and nonadditive genetic variation.  相似文献   

20.
The phenotypic effects of genetic and environmental manipulations have been rarely investigated simultaneously. In addition to phenotypic plasticity, their effect on the amount and directions of genetic and phenotypic variation is of particular evolutionary importance because these constitute the material for natural selection. Here, we used heterozygous insertional mutations of 16 genes involved in the formation of the Drosophila wing. The flies were raised at two developmental temperatures (18°C and 28°C). Landmark-based geometric morphometrics was used to analyze the variation of the wing size and shape at different hierarchical levels: among genotypes and temperatures; among individuals within group; and fluctuating asymmetry (FA). Our results show that (1) the phenotypic effects of the mutations depend on temperature; (2) reciprocally, most mutations affect wing plasticity; (3) both temperature and mutations modify the levels of FA and of among individuals variation within lines. Remarkably, the patterns of shape FA seem unaffected by temperature whereas those associated with individual variation are systematically altered. By modifying the direction of available phenotypic variation, temperature might thus directly affect the potential for further evolution. It suggests as well that the developmental processes responsible for developmental stability and environmental canalization might be partially distinct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号