首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
汶川地震滑坡迹地植物群落与环境的关系   总被引:1,自引:0,他引:1  
孙丽文  史常青  李丹雄  赵廷宁 《生态学报》2016,36(21):6794-6803
为了加快汶川地震滑坡迹地人工恢复植被的进程,探讨地震诱发的滑坡迹地植物群落与环境的关系。在5·12地震重灾区北川境内选取29个样地进行植被调查,采用10个环境指标刻画植物群落的地形、空间位置和土壤养分特征;利用TWINSPAN、CCA、DCA和DCCA,分析植物种、植物群落和植物生活型与环境的关系。结果显示:1)研究区的植物群落可划分为9个类型。2)研究区环境变量对植物种的解释量为21.96%,第一排序轴与pH值、海拔、土壤质地相关,反映的是植物种从次生植物群落向原生植物群落变化。通过DCCA分析得出,环境变量对植物群落的排序解释了25.7%,第一排序轴与pH值、海拔、土壤质地的相关较强,反映植物群落按照耐旱、耐贫瘠→人工或先锋植物→未受损的植被变化;第二排序轴与土壤有机质、全氮含量、坡向的相关,反映的是植物群落从草本植物→乔灌草或者灌草植物变化。3)滑坡迹地的植物群落与未受损林地的植物群落物种存在较大差异。  相似文献   

2.
木论喀斯特峰丛洼地森林群落空间格局及环境解释   总被引:8,自引:2,他引:8       下载免费PDF全文
基于广西壮族自治区木论国家级自然保护区典型峰丛洼地景观尺度内不同微生境条件和植物群落类型50个样地 (20 m × 20 m)的系统取样调查, 用二元物种指示方法(TWINSPAN)对样地内胸径(DBH) ≥ 1 cm的木本植物进行分类, 选择10个土壤环境因子和5个空间因子, 利用除趋势典范对应分析(DCCA)研究了森林群落分布的土壤环境与空间格局, 并给予定量化的合理解释。结果如下: 1) TWINSPAN将森林群落划分为11组, 在三级水平上分为4类生态群落类型。2) DCCA第一排序轴集中了排序的大部分信息, 突出反映了各森林群落所在的坡向和土壤主要养分梯度, 沿第一轴从左到右, 坡向由阴转阳, 岩石裸露率越来越高, 土壤主要养分逐渐降低, 森林群落分别出现了由原生性和耐阴性强逐步向阳性先锋树种为主的次生林和人工林变化的格局。3)因子分离分析结果表明, 土壤环境因子对森林群落分布格局的解释能力为39.16%, 其中21.02%单纯由土壤环境因子所引起, 空间因子的解释能力为31.34%, 其中13.16%独立于土壤环境的变化, 18.15%是土壤环境和空间因子相互耦合作用的结果, 不可解释部分达47.66%, 表明喀斯特峰丛洼地森林群落的物种共存受生态位分化理论和中性理论双重控制。  相似文献   

3.

Background

The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity.

Scope

This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies.

Conclusions

Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation.  相似文献   

4.
小五台亚高山草甸与生境关系分析   总被引:2,自引:0,他引:2       下载免费PDF全文
该文结合野外植被调查,在获取更为详细的景观尺度生境数据基础上,探讨了小五台亚高山草甸植物群落与直接环境因子之间的定量关系。典范对应分析(CCA)的结果表明:1) 在小五台的亚高山草甸分布地段,热量、养分和水分条件构成了其生境特征差异的基本格局;2) 用效应温度和太阳直接辐射量所表征的热量因子,指示出研究区植物群落最基本的分化,说明热量条件是制约研究区草甸群落分布的最重要的因子;3) 养分状况的差异,除了说明生境条件本身的差异外,也在一定程度上指示了放牧干扰对群落分布的影响;4) 由地形等因素控制的土壤表层水分状况,则反映了草甸植物群落分布所受到的水分条件影响。  相似文献   

5.
中国黑戈壁植物多样性分布格局及其影响因素   总被引:10,自引:0,他引:10  
我国西北地区内陆分布着近20万km~2的黑戈壁,由于其环境的特殊性,使其具有独特的生态系统,境内分布着多样的植被,蕴藏着大量特有的自然资源。但由于自然环境苛刻与交通条件不便,目前我国关于黑戈壁区系统的植被与物种多样性的研究还很缺乏。针对黑戈壁区植物多样性组成与分布特点,基于遥感及实地调查,采用DCCA排序和半变异函数模型等分析方法,对黑戈壁区植物群落组成,植物多样性特点及影响因素进行分析。研究结果表明:研究区植物以藜科和蒺藜科灌木或半灌木为主,群落物种生活型具有逐渐趋于简单甚至单一的特性,重要值0.1的植物主要有梭梭、红砂、白刺等13种;群落物种多样性呈现区域性的斑块化分布,结构性因子引起的物种多样性空间异质性占主导地位;作为极端干旱区,该区植物群落类型具有贫乏化及单一化的趋势,群落结构简单,植被覆盖度低,植物生长随环境的变化具有明显的可塑性,群落空间分异明显,群落空间演变具有明显的水分及土壤结构梯度;DCCA结果显示气候、土壤、地形是群落物种及类型变化的主要原因,海拔、坡位、土壤机械组成、降水、温度等环境因子对群落有着显著的影响,水土条件的空间异质性是戈壁植物多样性维持的关键因素。  相似文献   

6.
卧龙自然保护区亚高山草甸的数量分类与排序   总被引:12,自引:1,他引:12  
在野外植被调查的基础上,采用植被数量分析方法对岷江流域卧龙自然保护区亚高山草甸进行TWINSPAN分类和DCA排序,研究了植物种、植物群落与环境之间的关系.结果表明,该地区亚高山草甸共有植物139种,隶属于31科88属.应用数量分类方法将114个样方分为12个群落类型.在分析不同环境因子间的关系基础上,从定量的角度揭示了影响群落分布的主要因素是海拔梯度和土壤含水量.DCA排序图反映出排序轴的生态意义,第1轴反映了各群落类型所在环境的海拔梯度,从上到下,随着海拔的升高,植物群落或植物种的耐寒性越来越强;第2轴基本上反映了各群落类型所在环境的土壤含水量.排序结果与分类结果比较吻合,反映出植物群落类型和物种分布随环境因子梯度变化的趋势.  相似文献   

7.
A simulated map of the potential natural forest vegetation of Switzerland   总被引:1,自引:0,他引:1  
Using empirical data (ca. 7500 phytosociological releves), a simple, probabilistic ‘vegetation-site’ model was developed, to simulate geographical distribution of 71 forest community types, representing the potential natural vegetation (PNV) of Switzerland. The model was interfaced to a geographic information system (GIS) and used to generate a numerical vegetation map, on the basis of digital maps of 12 environmental variables including climatic conditions (temperature and precipitation), topography (elevation, slope, aspect), and soil parameters (soil pH and physical soil parameters). The predicted distribution of forest communities was compared with several vegetation maps, prepared for some subregions of Switzerland by means of traditional field methods. Similarity ranged from 50 to 80 %, depending on the community type, level of vegetational hierarchy and the geographical region. The current resolution and accuracy of the simulated vegetation map allows us to study the vegetational patterns on the level of the entire country or its major geographical and climatic regions. The simulated vegetation map is potentially an important tool in ecological risk assessment studies concerning the possible impacts of climate change on the ecological potential of forest sites and biological diversity of forest communities.  相似文献   

8.
The long-term effects of phosphorus fertilisation and climate on serpentine plant communities in Tuscany, central Italy have been investigated by using data from a 12 year before-after control-impact (BACI) experiment. Using the point quadrat method, data on plant communities were collected in June of each year from 1994 to 2005 in eight 2 × 2 m plots, four fertilised with phosphorus and four used as controls. Climatic data were obtained from a nearby meteorological station and summarised in 24 variables. Phosphorus addition significantly affected vegetation cover of both vascular and cryptogamic vegetation but did not influence species richness. The effects on species composition were clear but not marked, and consisted in promoting the abundance of some species already present in the community but not leading to the colonisation of other species. Interannual climate differences affected vegetation cover in the fertilised plots but not in the control ones, while climate affected the species richness values of different/various life-forms in both groups of plots, with more evident effects in the fertilised one. The effects of climate on plant community composition were weak once both the variability among individual plots and the successional dynamics were subtracted from the variance in species composition.  相似文献   

9.
Soil bacteria are largely missing from future biodiversity assessments hindering comprehensive forecasts of ecosystem changes. Soil bacterial communities are expected to be more strongly driven by pH and less by other edaphic and climatic factors. Thus, alkalinisation or acidification along with climate change may influence soil bacteria, with subsequent influences for example on nutrient cycling and vegetation. Future forecasts of soil bacteria are therefore needed. We applied species distribution modelling (SDM) to quantify the roles of environmental factors in governing spatial abundance distribution of soil bacterial OTUs and to predict how future changes in these factors may change bacterial communities in a temperate mountain area. Models indicated that factors related to soil (especially pH), climate and/or topography explain and predict part of the abundance distribution of most OTUs. This supports the expectations that microorganisms have specific environmental requirements (i.e., niches/envelopes) and that they should accordingly respond to environmental changes. Our predictions indicate a stronger role of pH over other predictors (e.g. climate) in governing distributions of bacteria, yet the predicted future changes in bacteria communities are smaller than their current variation across space. The extent of bacterial community change predictions varies as a function of elevation, but in general, deviations from neutral soil pH are expected to decrease abundances and diversity of bacteria. Our findings highlight the need to account for edaphic changes, along with climate changes, in future forecasts of soil bacteria.Subject terms: Microbial ecology, Metagenomics, Climate-change ecology  相似文献   

10.
黄土区露天煤矿排土场土壤与地形因子对植被恢复的影响   总被引:2,自引:0,他引:2  
王洪丹  王金满  曹银贵  卢元清  秦倩  王宇 《生态学报》2016,36(16):5098-5108
在脆弱的生态环境改善和恢复过程中,植被恢复与重建扮演着重要的角色。黄土露天煤矿区生态环境极其脆弱,认识矿区损毁土地植被恢复与地形、土壤因子之间的作用规律对矿区土地复垦与生态恢复改善至关重要。为此,选择山西平朔安太堡露天煤矿南排土场对2条样带27个复垦样地的土壤、地形、植被参数进行了采集与测定,并应用单因素方差分析与CANOCO4.5软件的降趋势对应分析和冗余分析研究了地形与土壤因子对植被恢复的影响。结果表明:植被与土壤变量之间呈显著相关,与地形变量之间相关性不明显;坡度主要影响草本覆盖度,坡向与有机质和速效磷之间具有线性相关性;速效钾对植被的变化起着重要的作用;土壤容重与砾石含量对土壤养分含量具有明显的指示作用;有机质与全氮呈显著正相关,各土壤养分指标之间存在明显的相关关系。为了改善和恢复黄土区露天煤矿排土场脆弱的生态系统,应该考虑植被和土壤的联合演替。在当地的生态环境状况下土地复垦与生态恢复的关键是改善土壤状况和增加人工植被,同时加强对排土场人工和自然植被的保护。  相似文献   

11.
大渡河中游干暖河谷区滑坡和泥石流灾害频发, 对该区域坡面植物群落的研究有助于揭示植被演替的方向, 为坡面植被生态恢复提供基本依据。本研究沿大渡河中游河谷区每隔约5 km设置典型样地, 调查了植被的物种组成和分布以及样地的地形、土壤等10个生境因子, 探讨河谷区植被的连续性变化, 并通过多元回归树(multivariate regression trees, MRT)、多样性指数和典范对应分析(canonical correspondence analysis, CCA)等方法对植物群落进行分类、比较和排序。结果表明: 大渡河中游干暖河谷植被以土壤碳含量、pH值和C : N等3个因子为节点, 可划分为多花胡枝子(Lespedeza floribunda)-荩草(Arthraxon hispidus)-香薷(Elsholtzia ciliate)(群落A)、地果(Ficus tikoua)-车桑子(Dodonaea viscosa)-川滇薹草(Carex schneideri)(群落B)、云南松(Pinus yunnanensis)-栓皮栎(Quercus variabilis)(群落C)和荩草-扭黄茅(Heteropogon contortus)(群落D)等4种群落。该区域以灌木和草本为主要植被类型(群落A、B、C), 间或有裸地分布, 易成为泥石流灾害产生的物源区; 以多花胡枝子为主的灌草群落A的物种丰富度、优势度与多样性表现一致, 均高于以乔木和草本为主的群落C和D, 但物种多样性优势并不显著, 灌草群落分布广而结构单一, 外来物种占比为8.33%, 是生态系统脆弱和不稳定的表现。多元回归树和典范对应分析结果表明, pH值、C : N、坡向和土壤容重等4个因子对植物群落组成和分布影响最大, 且土壤因子的影响大于地形因子。  相似文献   

12.
基于中国科学院亚热带农业生态研究所在木论国家级自然保护区借鉴CTFS标准建立的2hm2喀斯特常绿落叶阔叶混交林动态监测样地(50个20m×20m样方),选取代表木本植物群落、土壤性质和地形因子的22个指标,对其总体特征及三者之间的相互关系进行了经典统计分析、主成分分析、聚类分析与典型相关分析。结果表明,喀斯特常绿落叶阔叶混交林生态系统的景观异质性强、土壤养分含量高、物种丰富且结构合理,除海拔、Simpson指数、均匀度、pH之外的18个指标均呈中、强变异;综合土壤因子是影响生态系统的主要因子群,其次是综合群落多样性因子和结构性因子,综合地形因子的作用相对较弱;4种不同类型真实而直观地表征了群落类型、土壤肥力和地形的差异,相对优化的第3种类型主要分布在海拔较高、裸石率较大、坡度较高的阴坡中上部;植被、土壤、地形两两之间均存在着较高的相关性,植被与土壤因子之间,有机质、氮、磷起较大的作用,主要影响群落结构,植被和地形之间,坡向和岩石裸露率影响群落结构和物种丰富度,而坡向和坡位直接导致了土壤有机质、全氮、有效磷和pH的变化。  相似文献   

13.
Questions: What are the relative contributions of environmental factors and geographic distance to palm community structure at the mesoscale, and how do they depend on the length of the environmental gradient covered? How do soil and topography affect variation of the canopy and understory palm community structure at the mesoscale? How does fine‐scale variation within the broad edaphic/topographic classes affect palm community composition? Location: Reserva Ducke, terra‐firme forest, Manaus, Brazil. Methods: Palms were sampled in 72 plots 250 m × 4 m, systematically distributed over an area of 100 km2. Soil, topography and distance to watercourses were measured for all plots. The relationship between community structure axes, summarized by NMDS ordinations, and environmental predictors, was analysed with multivariate regressions. Matrix regressions were used to determine the proportions of variance explained by environmental and geographic predictors. Results: Floristic variation at the mesoscale was mostly related to environmental variation, and the proportion of variance explained depended on the amplitude of the environmental gradient. Soil was the main predictor of floristic change, but its effects differed between life forms, with the understory palm community structured within one of the edaphic/topographic classes, in association with distance to watercourses. Conclusions: Dispersal limitation does not explain palm composition at the mesoscale, and the amplitude of environmental gradients covered by the analysis can be as important as the scale of analysis, in determining the relative contributions of environmental and geographical components to community structure. Soil and topography can predict a large proportion of palm composition, but gradients differ in scale, with some environmental gradients being nested within others. Therefore, although all environmental gradients are nested within distance, they do not necessarily coincide.  相似文献   

14.
Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance of these conditions is limited due to the scarcity of studies, especially in the High Arctic. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast‐inland gradient in Northeast Greenland using a stratified random design. We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant‐plant interactions. Latent variable models were used to explain patterns in plant community composition. Species richness was mainly determined by variations in soil water content, which explained 35% of the variation, and to a minor degree by other variables related to topography. Species richness was not directly related to macroclimate. Latent variable models showed that 23.0% of the variation in community composition was explained by variables related to topography, while distance to the inland ice explained an additional 6.4 %. This indicates that some species are associated with environmental conditions found in only some parts of the coast–inland gradient. Inclusion of macroclimatic variation increased the model's explanatory power by 4.2%. Our results suggest that the main impact of climate changes in the High Arctic will be mediated by their influence on local soil water conditions. Increasing temperatures are likely to cause higher evaporation rates and alter the distribution of late‐melting snow patches. This will have little impact on landscape‐scale diversity if plants are able to redistribute locally to remain in areas with sufficient soil water.  相似文献   

15.
Establishing which factors determine species distributions is of major relevance for practical applications such as conservation planning. The Amazonian lowlands exhibit considerable internal heterogeneity that is not apparent in existing vegetation maps. We used ferns as a model group to study patterns in plant species distributions and community composition at regional and landscape scales. Fern species composition and environmental data were collected in 109 plots of 250 × 2 m distributed among four sites in Brazilian Amazonia. Interplot distances varied from 1 to ca 670 km. When floristically heterogeneous datasets were analyzed, the use of an extended Sørensen dissimilarity index rather than the traditional Sørensen index improved model fit and made interpretation of the results easier. Major factors associated with species composition varied among sites, difference in cation concentration was a strong predictor of floristic dissimilarity in those sites with pronounced heterogeneity in cation concentration. Difference in clay content was the most relevant variable in sites with uniform cation concentrations. In every case, environmental differences were invariably better than geographic distances in predicting species compositional differences. Our results are consistent with the ideas that: (1) the relative predictive capacity of the explanatory variables depend on the relative lengths of the observed gradients; and (2) environmental gradients can be hierarchically structured such that gradients occur inside gradients. Therefore, site‐specific relationships among variables can mask the bigger picture and make it more difficult to unravel the factors structuring plant communities in Amazonia.  相似文献   

16.
Diekmann  Martin  Eilertsen  Odd  Fremstad  Eli  Lawesson  Jonas E.  Aude  Erik 《Plant Ecology》1999,140(2):203-220
In this study we present the first comprehensive multivariate analysis of beech (Fagus sylvatica) forest communities in the Nordic countries. The history of beech and beech forests in Scandinavia are described. In the north, the species is climatically restrained and, at present, restricted to Denmark and the southern parts of Sweden and Norway.More than 2000 sample plots were compiled, partly from literature, partly from new and unpublished data. The material included more than 20 studies of beech forests, often recorded by different non-standardised sampling designs. Therefore, prior to data analysis, a large number of plots had to be excluded to reduce the heterogeneity of the data. Only such sample plots were considered that showed a predominance of Fagus sylvatica in the canopy, that had a size within the interval of 16–100 m2, and that could be located by geographical coordinates. All species abundance values were transformed into simple species presences, and data from different vegetation layers were merged into one.A TWINSPAN cluster analysis resulted in 15 types. Three main communities with several sub-communities and varieties can be distinguished: (1) the Fagus sylvatica-Fraxinus excelsior-Stachys sylvatica community on the most basic and fertile soils, (2) the Fagus sylvatica-Corylus avellana-Galium odoratum community on moderately fertile and acid soils, and (3) the Fagus sylvatica-Sorbus aucuparia-Deschampsia flexuosa community on very acid and oligotrophic soils. Synonyms in the recent literature on Nordic beech forests to these communities are given. An ordination with the program DECORANA confirmed the primary significance of soil acidity and nutrient status for community differentiation.p>  相似文献   

17.
QuestionsDoes the plant species composition of Thandiani sub Forests Division (TsFD) correlate with edaphic, topographic and climatic variables? Is it possible to identify different plant communities in relation to environmental gradients with special emphasis on indicator species? Can this approach to vegetation classification support conservation planning?LocationThandiani sub Forests Division, Western Himalayas.MethodsQuantitative and qualitative characteristics of species along with environmental variables were measured using a randomly stratified design to identify the major plant communities and indicator species of the Thandiani sub Forests Division. Species composition was recorded in 10 × 2.5 × 2 and 0.5 × 0.5 m square plots for trees, shrubs and herbs, respectively. GPS, edaphic and topographic data were also recorded for each sample plot. A total of 1500 quadrats were established in 50 sampling stations along eight altitudinal transects encompassing eastern, western, northern and southern aspects (slopes). The altitudinal range of the study area was 1290 m to 2626 m above sea level using. The relationships between species composition and environmental variables were analyzed using Two Way Cluster Analysis (TWCA) and Indicator Species Analysis (ISA) via PCORD version 5.ResultsA total of 252 plant species belonging to 97 families were identified. TWCA and ISA recognized five plant communities. ISA additionally revealed that mountain slope aspect, soil pH and soil electrical conductivity were the strongest environmental factors (p  0.05) determining plant community composition and indicator species in each habitat. The results also show the strength of the environment-species relationship using Monte Carlo procedures.ConclusionsAn analysis of vegetation along an environmental gradient in the Thandiani sub Forests Division using the Braun-Blanquet approach confirmed by robust tools of multivariate statistics identified indicators of each sort of microclimatic zones/vegetation communities which could further be used in conservation planning and management not only in the area studied but in the adjacent regions exhibit similar sort of environmental conditions.  相似文献   

18.
选取6个样地,采用协同样方法采样,对内蒙古黑岱沟露天煤矿排土场与原始植被地的植物及土壤因子进行对比研究。结果表明:(1)通过TWINSPAN划分法得到8个植物群落,经DCA法分析核实,与TWINSPAN划分结果一致。(2)油松+蒙古冰草复垦模式比新疆杨+紫花苜蓿复垦模式生态适应性差,紫花苜蓿丧失优势种的地位而被拂子茅取代。(3)剔除频度小于5%,获得228×74的样方-物种原始数据矩阵,对11个环境因子测定,采取"前向选择"和"Monte Carlo检验"确定了7个代理变量,形成228×7的样方-环境因子数据矩阵,经DCCA分析群落分布、格局及组成主要受土壤有机质(第1轴)、土壤密度(第2轴)两因子影响;第1轴特征值0.895,贡献率58.7%,沿着第1轴群落依次从类型Ⅷ、Ⅶ、Ⅴ、Ⅲ、Ⅳ、Ⅱ、Ⅰ土壤有机质逐渐变大;第2轴特征值0.356,贡献率17.4%,沿着第2轴,群落Ⅰ、Ⅱ、Ⅴ、Ⅶ土壤密度依次变小。(4)排土场群落物种组成较原始群落简单,现有群落既未向复垦设计的方向发展,也未向原始植被方向演化。  相似文献   

19.
Grassland vegetation on the Montlake fill was analyzed using TWINSPAN. Eight herb communities were recognized. Moisture, proximity to gas vents, and disturbance are the main factors that control species and community distributions. Binary discriminant analysis (BDA) and detrended correspondence analysis (DCA) were used to study species-environment relationships. BDA revealed complex species response patterns and the resultant indicator values were used to interpret the ordination axes. Species distributions are controlled primarily by moisture, but also influenced by soil pH. Multiple regressions revealed little about plant-environment relationships not discovered by BDA. Before robust nonlinear methods are available, BDA, metric ordination with data stratification and nonmetric ordination are methods that can yield satisfactory results in exploratory plant-environment studies. BDA alone is an efficient, useful first approach where response patterns of species are initially unknown.Abbreviations BDA Binary Discriminant Analysis - DCA Detrended Correspondence Analysis  相似文献   

20.
准噶尔盆地典型地段植物群落及其与环境因子的关系   总被引:3,自引:0,他引:3  
赵从举  康慕谊  雷加强 《生态学报》2011,31(10):2669-2677
沿88°E线,南北纵穿新疆北部准噶尔盆地,选择环境梯度明显的典型地段,设置33个具有代表性的野外样方,应用TWINSPAN与DCCA分析样方的物种数据和环境数据。研究结果表明:(1)样方TWINSPAN分类结果的第一级分类将分布于流动、半流动沙丘(垄)上的白梭梭群落与固定、半固定沙地上的梭梭群落区分开来,进一步的分类,可将33个样方划分为12个组。35种优势植物种TWINSPAN第1级分类把沙漠内部植物种与外缘物种分开。第2级分类把沙漠内部垄上与垄间植物种以及沙漠外缘旱生、中生和盐生植物种分开。(2)在各种环境因子中,土壤水分与相对高度(或地面活动性)是影响植物群落分布的最主要环境因子,DCCA第一排序轴反映生境水分环境条件,第2轴反映土壤结构梯度的变化。(3)除相对高度(或地面活动性)与土壤水分外,在沙漠南部外缘的山前冲积、洪积扇扇缘,土壤盐分状况亦为植物生长的重要胁迫因子;在沙漠北部外缘的砾石戈壁平原,基质的机械组成对群落分布格局有重要影响;在沙漠内部,土壤质地、地面坡度对植物群落的分布有较大影响。(4)以沙漠为中心的准噶尔盆地地势相对高度与地面活动性、土壤有机质与土壤粘粒、土壤水分与土壤总盐、pH值、有机质、相对高度之间存在显著相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号