首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Overwintering larvae of multivoltine and univoltine populations of Leptalina unicolor were reared under various constant and fluctuating temperatures superimposed on a photoperiod of either 12 h of light and 12 h of darkness (LD 12:12) or LD 15:9. Diapause of the larvae terminated in midwinter (by early February). All the larvae of both populations pupated after two molts without feeding and the head capsule width of the final instar larvae was smaller than that of the penultimate instar ones. The photoperiod did not significantly affect larval development, but long‐day conditions (LD 15:9) hastened pupal development. The thermoperiod had a significant effect on the development of the multivoltine population. When multivoltine population larvae were kept under a low fluctuating temperature regime (cryophase/thermophase = 14/20°C), the period until adult eclosion was shorter than that under a constant temperature of 17°C. On the contrary, when larvae were kept under a high fluctuating temperature regime (24/30°C), the period until adult eclosion was longer than that under a constant temperature of 27°C. However, the univoltine population did not show such a reaction to the fluctuating temperature. The durations of final instar larva and pupa of the multivoltine population were shorter than those of the univoltine population. The developmental zeros of penultimate and final instar larvae and pupae of the univoltine population were lower than those of the multivoltine population. The head capsule width of penultimate instar larvae and the forewing length of adults of the univoltine population were larger than those of the multivoltine population for both sexes.  相似文献   

2.
Life histories show genetic population-level variation due to spatial variation in selection pressures. Phenotypic plasticity in life histories is also common, facilitating fine-tuning of the phenotype in relation to the prevailing selection regime. In multivoltine (≥ 2 generations per year) insects, individuals following alternative developmental pathways (diapause/direct development) experience different selection regimes. We studied the genetic and phenotypic components of juvenile development in Cabera exanthemata (Lepidoptera: Geometridae) in a factorial split-brood experiment. F(2) offspring of individuals originating from populations in northern and central Finland were divided among manipulations defined by temperature (14°C/20°C) and day length (24 h/15 h). Short day length invariably induced diapause, whereas continuous light almost invariably induced direct development in both regions, although northern populations are strictly univoltine in the wild. Individuals from northern Finland had higher growth rates, shorter development times and higher pupal masses than individuals from central Finland across the conditions, indicating genetic differences between regions. Individuals that developed directly into adults tended to have higher growth rates, shorter development times and higher pupal masses than those entering diapause, indicating phenotypic plasticity. Temperature-induced plasticity was substantial; growth rate was much higher, development time much shorter and pupal mass higher at 20°C than at 14°C. The degree of plasticity in relation to developmental pathway was pronounced at 20°C in growth rate and development time and at 14°C in pupal mass, emphasizing multidimensionality of reaction norms. The observed genetic variation and developmental plasticity seem adaptive in relation to time-stress due to seasonality.  相似文献   

3.
1. Although there is a great deal of theoretical and empirical data about the life history responses of time constraints in organisms, little is known about the latitude‐compensating mechanism that enables northern populations' developmental rates to compensate for latitude. To investigate the importance of photoperiod on development, offspring of the obligatory univoltine damselfly Lestes sponsa from two populations at different latitudes (53°N and 63°N) were raised in a common laboratory environment at both northern and southern photoperiods that corresponded to the sites of collection. 2. Egg development time was shorter under northern photoperiod regimes for both populations. However, the northern latitude population showed a higher phenotypic plasticity response to photoperiod compared with the southern latitude population, suggesting a genetic difference in egg development time in response to photoperiod. 3. Larvae from both latitudes expressed shorter larval development time and faster growth rates under northern photoperiod regimes. There was no difference in phenotypic plastic response between northern and southern latitude populations with regard to development time. 4. Data on field collected adults showed that adult sizes decreased with an increase in latitude. This adult size difference was a genetically fixed trait, as the same size difference between populations was also found when larvae were reared in the laboratory. 5. The results suggest phenotypic plasticity responses in life history traits to photoperiod, but also genetic differences between north and south latitude populations in response to photoperiod, which indicates the presence of a latitudinal compensating mechanism that is triggered by a photoperiod.  相似文献   

4.
For plants, light availability is an important environmental factor that varies both within and between populations. Although the existence of sun and shade “ecotypes” is controversial, it is often assumed that trade-offs may exist between performance in sun and in shade. This study therefore investigated variation in reaction norms to light availability within and between two neighboring natural populations of the annual Impatiens capensis, one in full sun and the other in a forest understory. Seedlings were collected randomly from both populations and grown to maturity in a greenhouse under two light conditions: full light and 18% of full light. Selfed full-sib seed families were collected from plants from both populations grown in both parental light environments. To characterize family reaction norms, seedlings from each family were divided into the same two light treatments and individuals were scored for a variety of morphological and life-history traits. The maternal light environment had little impact on progeny reaction norms. However, the two study populations differed both qualitatively and quantitatively in plastic response to light availability (indicated by significant population x environment interactions in mixed-model ANCOVA). Much of this difference was attributable to population differences in light sensitivity of axillary meristem allocation patterns, which produced concurrent differences in reaction norms for a suite of developmentally linked traits. Within each population, different sets of traits displayed significant variation in plasticity (indicated by significant family x environment interactions). Thus, the genetic potential for evolutionary response to selection in heterogeneous light environments may differ dramatically between neighboring plant populations. Between-environment genetic correlations were largely positive in the woods population and positive or nonsignificant in the sun population; there was no evidence for performance trade-offs across environments or sun or shade “specialist” genotypes within either population. There was little evidence that population differences represented adaptive differentiation for sun or shade; rather, the results suggested the hypothesis of differential selection on patterns of meristem allocation caused by population differences in timing of mortality and intensity of competition.  相似文献   

5.
Several aspects of genotype-environment interaction may act to modulate natural selection in populations that encounter variable environments. In this study the norms of reaction (phenotypic responses) of 20 cloned genotypes from two natural populations of the annual plant Polygonum persicaria were determined over a broad range of controlled light environments (8%-100% full sun). These data reveal both the extent of functionally adaptive phenotypic plasticity expressed by individual genotypes, and the patterns of diversity among genotypes for characters relevant to fitness, in response to an environmental factor that is both highly variable within populations and critical to growth and reproduction.  相似文献   

6.
Negative density dependence of clutch size is a ubiquitous characteristic of avian populations and is partly due to within‐individual phenotypic plasticity. Yet, very little is known about the extent to which individuals differ in their degree of phenotypic plasticity, whether such variation has a genetic basis and whether level of plasticity can thus evolve in response to selection. Using 18 years of data of a Dutch great tit population (Parus major), we show that females reduced clutch size with increasing population density (slopes of the reaction norms), differed strongly in their average clutch size (elevations of the reaction norms) at the population‐mean density and that the latter variation was partly heritable. In contrast, we could not detect individual variation in phenotypic plasticity (‘I × E’). Level of plasticity is thus not likely to evolve in response to selection in this population. Observed clutch sizes deviated more from the estimated individual reaction norms in certain years and densities, implying that the within‐individual between‐year variance (so‐called residual variance) of clutch size was heterogeneous with respect to these factors. Given the observational nature of this study, experimental manipulation of density is now warranted to confirm the causality of the observed density effects. Our analyses demonstrate that failure to acknowledge this heterogeneity would have inflated the estimate of ‘I × E’ and led to misinterpretation of the data. This paper thereby emphasizes the fact that heterogeneity in residuals can provide biologically insightful information about the ecological processes underlying the data.  相似文献   

7.
S. E. Mitchell  J. Halves  W. Lampert 《Oikos》2004,106(3):469-478
We investigated the diversity and thermal response of a fitness related trait, juvenile growth rate, in seasonal population samples of Daphnia magna from two temperate ponds. Both populations were intermittent, i.e. they disappeared from the water body and recolonized seasonally by hatching from resting eggs in the sediment.
Temporally isolated clones of Daphnia magna showed the typical asymmetric response for growth rate with temperature and a sharp decline after the maximum response at 26°C (TMR). There was no evidence for genetically adapted seasonal groups. Despite significant genetic variation among clones and for phenotypic plasticity (G×E interactions without genetic correlations), seasonal groups of clones showed no shift in TMR and mean temperature reaction norms were similar among groups and both populations. Heritabilities remained similar among temperatures despite a large increase in genetic variance at stressfully high temperatures of 29°C and 32°C, due to simultaneous increase in environmental variance. Further, heritabilities remained high among sample periods and were not eroded during several months of asexual reproduction.
Regular diapause, an intrinsic feature of intermittent Daphnia populations, may replace the need for physiological temperature adaptation and promote maintenance of diversity through phenotypic similarity by reducing the time over which competitive interactions occur. Such populations are unlikely to be directly affected by elevated temperatures. They have a large potential for phenotypic plasticity as their TMR is higher than the temperature normally encountered.  相似文献   

8.
Latitudinal clines in thermal reaction norms of development are a common phenomenon in temperate insects. Populations from higher latitudes often develop faster throughout the range of relevant temperatures (i.e countergradient variation) because they must be able to complete their life cycle within a shorter seasonal time window compared to populations at lower latitudes. In the present study, we experimentally demonstrate that two species of butterflies Anthocharis cardamines (L.) and Pieris napi (L.) instead show a cogradient variation in thermal reaction norms of post‐winter pupal development so that lower latitude populations develop faster than higher latitude populations. The two species share host plants but differ in the degree of phenological specialization, as well as in the patterns of voltinism. We suggest that the pattern in A. cardamines, a univoltine phenological specialist feeding exclusively on flowers and seedpods, is the result of selection for matching to the phenological pattern of its local host plants. The other species, P. napi, is a phenological generalist feeding on the leaves of the hosts and it shows a latitudinal cline in voltinism. Because the latitudinal pattern in P. napi was an effect of slow development in a fraction of the pupae from the most northern population, we hypothesize that this population may include both bivoltine and univoltine genotypes. Consequently, although the two species both showed cogradient patterns in thermal reaction norms, it appears likely that this was for different reasons. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 981–991.  相似文献   

9.
In the framework of phenotypic plasticity, tolerance to browsing can be operationally defined as a norm of reaction comparing plant performance in undamaged and damaged conditions. Genetic variation in tolerance is then indicated by heterogeneity in the slopes of norms of reaction from a population. We investigated field gentian (Gentianella campestris) tolerance to damage in the framework of phenotypic plasticity using a sample of maternal lines from natural populations grown under common garden conditions and randomly split into either a control or an artificial clipping treatment. We found a diversity of tolerance norms of reaction at both the population and family level: the impacts of clipping ranged from poor tolerance (negative slope) to overcompensation (positive slope). We detected heterogeneity in tolerance norms of reaction in four populations. Similarly, we found a variety of plastic architectural responses to clipping and genetic variation in these responses in several populations. Overall, we found that the most tolerant populations were late flowering and also exhibit the greatest plastic increases in node (meristem) production in response to damage. We studied damage-imposed natural selection on plasticity in plant architecture in 10 of the sampled populations. In general, there was strong positive direct selection on final number of nodes for both control and clipped plants. However, the total selection on nodes (direct + indirect selection) within each treatment category depended heavily on the frequency of damage and cross-treatment genetic correlations in node production. In some cases, strong correlated responses to selection across the damage treatment led to total selection against nodes in the more rare environment. This could ultimately lead to the evolution of maladaptive phenotypes in one or both of the treatment categories. These results suggest that tolerance and a variety of architectural responses to damage may evolve by both direct and indirect responses to natural selection. While the present study demonstrates the potential importance of cross-treatment genetic correlations in directing the evolution of tolerance traits, such as branch or node production, we did not find any strong evidence of genetic trade-offs in candidate tolerance traits between undamaged and damaged conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
1. The life history of the small herbivorous stonefly Nemoura trispinosa Claassen was studied in a variety of small springs in southern Ontario, Canada. Nymphs generally were able to tolerate a wide range of environmental conditions and were found in 78% of habitats sampled, although population densities differed markedly. 2. Life-cycle patterns varied from a univoltine, slow seasonal type to a univoltine, fast seasonal type with extended egg development. In one, highly stable, spring the life cycle was semivoltine. Inter-year variation was studied for 5 years in one spring and was found to be low relative to among-spring variation. 3. Differences in the life history traits of N. trispinosa populations from our spring series were most probably an expression of phenotypic plasticity rather than of genetic differentiation. 4. Maximum annual water temperature was the factor most influential on nymphal growth rate (non-linear relationship), whereas range in generation time was related to the degree of habitat permanence.  相似文献   

11.
Many organisms display phenotypic plasticity as adaptation to seasonal environmental fluctuations. Often, such seasonal responses entails plasticity of a whole suite of morphological and life‐history traits that together contribute to the adaptive phenotypes in the alternative environments. While phenotypic plasticity in general is a well‐studied phenomenon, little is known about the evolutionary fate of plastic responses if natural selection on plasticity is relaxed. Here, we study whether the presumed ancestral seasonal plasticity of the rainforest butterfly Bicyclus sanaos (Fabricius, 1793) is still retained despite the fact that this species inhabits an environmentally stable habitat. Being exposed to an atypical range of temperatures in the laboratory revealed hidden reaction norms for several traits, including wing pattern. In contrast, reproductive body allocation has lost the plastic response. In the savannah butterfly, B. anynana (Butler, 1879), these traits show strong developmental plasticity as an adaptation to the contrasting environments of its seasonal habitat and they are coordinated via a common developmental hormonal system. Our results for Bsanaos indicate that such integration of plastic traits – as a result of past selection on expressing a coordinated environmental response – can be broken when the optimal reaction norms for those traits diverge in a new environment.  相似文献   

12.
The potentially multivoltine comma butterfly, Polygonia c-album L., hibernates in the adult stage. The adult seasonal morph is demonstrated to be a good indicator of whether an individual has entered reproductive diapause or is developing directly to sexual maturation. This fact, and the assumption that a short development time is not equally important to all categories of individuals, was used to test predictions on variation in life-history traits among categories (morphs and sexes) and environments (temperature and photoperiod) at the level of individuals and to some extent families and populations (the univoltine Stockholm population and the partially bivoltine Oxford population). Individuals developing to adults in a short time were expected to be smaller and lighter as a result of a basic trade-off between the two traits. Development times varied in accordance with predictions, but in most cases this was due to plastic growth and development in both the larval and pupal stages rather than through variation in size or weight, i.e. size was a highly canalized trait. This suggests a relationship between plasticity and canalization and a strong potential for plasticity to shield life-history traits from selection. Individuals regulated development times also within developmental pathways, in response to photoperiods indicating the progression of the season. These and other results suggest that development times are not normally minimized in temperate butterflies unless this is enforced by direct development and protandry. There is thus scope for a high degree of adaptive plasticity in growth- and developmental rates which may devalue the basic trade-offs assumed by life-history theory and account for inconsistencies with its predictions.  相似文献   

13.
Adaptation to heterogeneous environments can occur via phenotypic plasticity, but how often this occurs is unknown. Reciprocal transplant studies provide a rich dataset to address this issue in plant populations because they allow for a determination of the prevalence of plastic versus canalized responses. From 31 reciprocal transplant studies, we quantified the frequency of five possible evolutionary patterns: (1) canalized response–no differentiation: no plasticity, the mean phenotypes of the populations are not different; (2) canalized response–population differentiation: no plasticity, the mean phenotypes of the populations are different; (3) perfect adaptive plasticity: plastic responses with similar reaction norms between populations; (4) adaptive plasticity: plastic responses with parallel, but not congruent reaction norms between populations; and (5) nonadaptive plasticity: plastic responses with differences in the slope of the reaction norms. The analysis included 362 records: 50.8% life‐history traits, 43.6% morphological traits, and 5.5% physiological traits. Across all traits, 52% of the trait records were not plastic, and either showed no difference in means across sites (17%) or differed among sites (83%). Among the 48% of trait records that showed some sort of plasticity, 49.4% showed perfect adaptive plasticity, 19.5% adaptive plasticity, and 31% nonadaptive plasticity. These results suggest that canalized responses are more common than adaptive plasticity as an evolutionary response to environmental heterogeneity.  相似文献   

14.
When populations experience substantial variation in environmental conditions, they may evolve phenotypic plasticity in response to these varying selection pressures. Evolutionary theory predicts differentiation in the level of phenotypic plasticity among different habitats. We evaluated temperature-induced phenotypic responses in juvenile growth rate in natural populations of the springtail Orchesella cincta , inhabiting forest and heathland. These habitats typically co-occur but differ strongly with respect to, for example, thermal regime, relative humidity, and structure. Offspring of females from the two habitats were reared at different temperatures in climate rooms and the temperature response of juvenile growth rate and egg size was measured. We found a habitat-specific difference in plasticity of juvenile growth rate. The reaction norms of the forest populations were steeper than the reaction norms for heath populations at two replicated sampling sites. Egg weight itself was demonstrated to be a plastic trait with a higher egg weight at low temperatures, but the thermal response did not differ between habitats. We conclude that these populations have diverged due to strong local natural selection. Our results support the argument that the level of phenotypic plasticity itself can be under selection and that differentiation in reaction norms can occur even in neighbouring habitats with no barrier to gene flow.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 265–271.  相似文献   

15.
Environmental changes may stress organisms and stimulate an adaptive phenotypic response. Effects of inbreeding often interact with the environment and can decrease fitness of inbred individuals exposed to stress more so than that of outbred individuals. Such an interaction may stem from a reduced ability of inbred individuals to respond plastically to environmental stress; however, this hypothesis has rarely been tested. In this study, we mimicked the genetic constitution of natural inbred populations by rearing replicate Drosophila melanogaster populations for 25 generations at a reduced population size (10 individuals). The replicate inbred populations, as well as control populations reared at a population size of 500, were exposed to a benign developmental temperature and two developmental temperatures at the lower and upper margins of their viable range. Flies developed at the three temperatures were assessed for traits known to vary across temperatures, namely abdominal pigmentation, wing size, and wing shape. We found no significant difference in phenotypic plasticity in pigmentation or in wing size between inbred and control populations, but a significantly higher plasticity in wing shape across temperatures in inbred compared to control populations. Given that the norms of reaction for the noninbred control populations are adaptive, we conclude that a reduced ability to induce an adaptive phenotypic response to temperature changes is not a general consequence of inbreeding and thus not a general explanation of inbreeding–environment interaction effects on fitness components.  相似文献   

16.
We investigated the changes in amounts and patterns of phenotypic plasticity which have arisen in the Texas annual Phlox drummondii during domestication. Character means and plasticities were compared for five populations: a wild population, three cultivated varieties (a Tall cultivar and two Dwarf cultivars), and a population of an escaped Tall cultivar naturalized in Texas. To measure plasticity, we scored the responses of 10 characters to six treatments and analyzed both the amount and direction of plastic response. Wild plants are phenotypically distinct from the Tall and Escaped cultivar and from the two Dwarf cultivars. Despite its substantial phenotypic divergence from the Wild population, the Tall cultivar's plasticity has changed little during domestication. Traits most strongly correlated with fitness show the least change in their plasticities. The two Dwarf varieties have very similar plasticities, despite strong phenotypic divergence from the Tall population and despite the fact that they were derived from different Tall lines. This suggests that indirect selection on phenotypic plasticity related to selection for the Dwarf habit has resulted in the characteristic plasticity of the Dwarf lines. The Escaped cultivar has substantially different plastic responses from those of the Wild or cultivated populations.  相似文献   

17.
Phenotypic plasticity describes an organism's ability to produce multiple phenotypes in direct response to its environmental conditions. Over the past 15 years empiricists have found that this plasticity frequently exhibits geographic variation and often possesses a significant heritable genetic basis. However, few studies have examined both of these aspects of plasticity simultaneously. Here, we examined both the geographic and genetic variations of the plasticity for diapause incidence (the proportion of eggs that enter an arrested state of development capable of surviving over the winter) relative to temperatures and photoperiods associated with long and short season environments across six populations of the striped ground cricket, Allonemobius socius, using a half-sibling split brood quantitative genetic design. We found that plasticity, as measured by the slope of the reaction norm, was greater in the southern-low altitude region (where populations are bivoltine) relative to the southern-high and northern-low altitude regions (where populations are univoltine). However, the heritability of plasticity was only significantly different from zero in univoltine populations that experienced "intermediate" natal season lengths. These patterns suggest that selection may favor the plasticity of diapause incidence in bivoltine regions, but act against plasticity in regions in which populations are univoltine. Furthermore, our data suggest that under "intermediate" natal season length conditions, the interplay between local adaptation and gene flow may keep the plasticity of diapause incidence low (but still significant) while maintaining its genetic variation. As such, this study not only provides a novel observation into the geographic variation of phenotypic plasticity, but also provides much needed groundwork for tests of its adaptive significance.  相似文献   

18.
The relative roles of genetics and developmental plasticity in creating phenotypes adapted to prevailing conditions are insufficiently understood. In potentially multivoltine temperate insects, individuals that do not enter diapause but develop directly into reproductive adults within the same season are severely time-constrained. Direct development is, however, under selection only if expressed in the wild. Thus, adaptive correlates of the direct development are expected to evolve and persist only in multivoltine populations. We studied the genetic and phenotypic components of variation in juvenile development in the geometrid moth Chiasmia clathrata from univoltine and bivoltine regions. Larvae were reared at two temperatures (14/20 °C) and densities (low/high) in a factorial split-brood experiment. High temperature and low density promoted direct development, the former condition being associated with a short development time, high growth rate and large body size. Genotypes of bivoltine origin had a higher propensity for direct development and seemingly expressed an exaggerated plastic response to increasing temperature compared to the ones from univoltine populations. Alternative life history phenotypes associated with the induced developmental pathway emerged only in the bivoltine region, direct development resulting in a short larval period, high growth rate and small size at 20 °C there. The degree of differentiation between the developmental pathways was insensitive to larval density; high density only decreased both development time and body size to a certain degree. We conclude that the differences between the pathways are not due to the induction of a particular pathway itself, but geographically varying selection pressures shape the correlation structure among life history traits and their pathway-specific expression.  相似文献   

19.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

20.
A long-standing question in ecology is whether phenotypic plasticity, rather than selection per se, is responsible for phenotypic variation among populations. Plasticity can increase or decrease variation, but most previous studies have been limited to single populations, single traits and a small number of environments assessed using univariate reaction norms. Here, examining two genetically distinct populations of Daphnia pulex with different predation histories, we quantified predator-induced plasticity among 11 traits along a fine-scale gradient of predation risk by a predator (Chaoborus) common to both populations. We test the hypothesis that plasticity can be responsible for convergence in phenotypes among different populations by experimentally characterizing multivariate reaction norms with phenotypic trajectory analysis (PTA). Univariate analyses showed that all genotypes increased age and size at maturity, and invested in defensive spikes (neckteeth), but failed to quantitatively describe whole-organism response. In contrast, PTA quantified and qualified the phenotypic strategy the organism mobilized against the selection pressure. We demonstrate, at the whole-organism level, that the two populations occupy different areas of phenotypic space in the absence of predation but converge in phenotypic space as predation threat increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号