共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rob Kulathinal Rama S. Singh 《Evolution; international journal of organic evolution》1998,52(4):1067-1079
In accordance with Haldane's rule, hybridizations between species of the Drosophila simulans clade produce fertile females but sterile males. In this study, a comprehensive characterization was undertaken on the six types of F1 males that were the result of the crosses between D. simulans, D. sechellia, and D. mauritiana. With the use of light and electron microscopy, it was shown that while each particular hybrid genotype exhibited a specific sterility phenotype, these phenotypes fell into two distinct classes. The two hybrid genotypes that possessed D. mauritiana X-chromosomes contained spermatogenic defects that caused arrests in premeiotic spermatogenic stages. The other four F1 hybrids possessed postmeiotic spermatogenic defects. Nonsynchronous cell divisions, underdeveloped mitochondrial derivative-axonemal associations, and microtubule abnormalities were common to all of these hybrids. Each particular postmeiotically defective hybrid genotype demonstrated characteristically distinct profiles in sperm bundle number in addition to characteristic spermiogenic arrests in the furthest developed spermatids. These results in species hybrids contrast with the absence of significant differences in spermatogenic characters between species of this clade. In addition, by utilizing an attached-X cross, we investigated the influence of maternal effects and cytoplasmic factors on the sterility of D. simulans F1 hybrids and found none. However, we discovered a strain of D. simulans (2119) that caused a large shift in sterility from postmeiotic to premeiotic when crossed to D. sechellia. This suggests that D. simulans is polymorphic for genes involving premeiotic and postmeiotic sterility and that the two types of sterilities between species may have a simple genetic basis. 相似文献
3.
Thomas D. Brekke Jeffrey M. Good 《Evolution; international journal of organic evolution》2014,68(11):3134-3148
Mammalian hybrids often show abnormal growth, indicating that developmental inviability may play an important role in mammalian speciation. Yet, it is unclear if this recurrent phenotype reflects a common genetic basis. Here, we describe extreme parent‐of‐origin‐dependent growth in hybrids from crosses between two species of dwarf hamsters, Phodopus campbelli and Phodopus sungorus. One cross type resulted in massive placental and embryonic overgrowth, severe developmental defects, and maternal death. Embryos from the reciprocal cross were viable and normal sized, but adult hybrid males were relatively small. These effects are strikingly similar to patterns from several other mammalian hybrids. Using comparative sequence data from dwarf hamsters and several other hybridizing mammals, we argue that extreme hybrid growth can contribute to reproductive isolation during the early stages of species divergence. Next, we tested if abnormal growth in hybrid hamsters was associated with disrupted genomic imprinting. We found no association between imprinting status at several candidate genes and hybrid growth, though two interacting genes involved in embryonic growth did show reduced expression in overgrown hybrids. Collectively, our study indicates that growth‐related hybrid inviability may play an important role in mammalian speciation but that the genetic underpinnings of these phenotypes remain unresolved. 相似文献
4.
5.
6.
7.
Wolbachia are maternally-transmitted endocellular bacteria infecting several arthropod species. In order to study the possibility of Wolbachia segregation in a naturally bi-infected host, isofemale lines from a bi-infected Drosophila simulans (Sturtevant) strain from Nouméa (New Caledonia) were backcrossed using uninfected males carrying the same nuclear background. Uninfected males were used to avoid the cytoplasmic incompatibility syndrome (CI) associated with the presence of Wolbachia in males. Each line was established using a female infected simultaneously by the two different Wolbachia variants wHa and wNo. The backcross led to some individuals carrying only one type of infection being recovered among the progeny of the bi-infected foundress females. Rarely, uninfected individuals were also recovered. Isolated for the first time in its natural host, wNo exhibited a significantly weaker CI phenotype than the isolated wHa variant. Infection fate when backcross conditions were relaxed varied depending on rearing conditions of the host. Under favourable conditions, the infection was generally maintained, while it was frequently lost under unfavourable conditions. This result probably reflects the direct fitness dependence of the symbiont on its host. 相似文献
8.
Roman Yukilevich 《Evolution; international journal of organic evolution》2013,67(6):1805-1814
Understanding the evolutionary mechanisms that facilitate speciation and explain global patterns of species diversity has remained a challenge for decades. The most general pattern of species biodiversity is the latitudinal gradient, whereby species richness increases toward the tropics. Although such a global pattern probably has a multitude of causes, recent attention has focused on the hypothesis that speciation and the evolution of reproductive isolation occur faster in the tropics. Here, I tested this prediction using a dataset on premating and postzygotic isolation between recently diverged Drosophila species. Results showed that while the evolution of premating isolation was not greater between tropical Drosophila relative to nontropical species, postzygotic isolation evolved faster in the tropics. In particular, hybrid male sterility was much greater among tropical Drosophila compared to nontropical species pairs of similar genetic age. Several testable explanations for the novel pattern are discussed, including greater role for sterility‐inducing bacterial endosymbionts in the tropics and more intense sperm–sperm competition or sperm–egg sexual conflict in the tropics. The results imply that processes of speciation in the tropics may evolve at different rates or may even be somewhat different from those at higher latitudes. 相似文献
9.
Taichi A. Suzuki Michael W. Nachman 《Evolution; international journal of organic evolution》2015,69(9):2468-2481
In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent‐of‐origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent‐of‐origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto‐nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation. 相似文献
10.
Athene Giesen Martin A. Schfer Wolf U. Blanckenhorn 《Journal of Zoological Systematics and Evolutionary Research》2019,57(1):80-90
Identifying the contribution of pre‐ and postzygotic barriers to gene flow is a key goal of speciation research. The widespread dung fly species Sepsis cynipsea and Sepsis neocynipsea offer great potential for studying the speciation process over a range of opportunities for gene exchange within and across sister species (cross‐continental allopatry, continental parapatry and sympatry). We examined the role of postcopulatory isolating barriers by comparing female fecundity and egg‐to‐adult viability of F1 and F2 hybrids, as well as backcrosses of F1 hybrids with the parental species, via replicated crosses of sym‐, para‐ and allopatric populations. Egg‐to‐adult viability was strongly but not totally suppressed in hybrids, and offspring production approached nil in the F2 generation (hybrid breakdown), indicating yet unspecified intrinsic incompatibilities. Viable F1 hybrid offspring showed almost absolute male (the heterogametic sex) sterility while females remained largely fertile, in accordance with Haldane's rule. Hybridization between the two species in European areas of sympatry (Swiss Alps) indicated only minor reinforcement based on fecundity traits. Crossing geographically isolated European and North American S. neocynipsea showed similar albeit weaker isolating barriers that are most easily explained by random genetic drift. We conclude that in this system with a biogeographic continuum of reproductive barriers, speciation is mediated primarily by genetic drift following dispersal of flies over a wide (allopatric) geographic range, with some role of natural or sexual selection in incidental or direct reinforcement of incompatibility mechanisms in areas of European sympatry. S(ubs)pecies status of continental S. neocynipsea appears warranted. 相似文献
11.
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities. 相似文献
12.
Telschow A Hammerstein P Werren JH 《Evolution; international journal of organic evolution》2005,59(8):1607-1619
Wolbachia is a widespread group of intracellular bacteria commonly found in arthropods. In many insect species, Wolbachia induce a cytoplasmic mating incompatibility (CI). If different Wolbachia infections occur in the same host species, bidirectional CI is often induced. Bidirectional CI acts as a postzygotic isolation mechanism if parapatric host populations are infected with different Wolbachia strains. Therefore, it has been suggested that Wolbachia could promote speciation in their hosts. In this article we investigate theoretically whether Wolbachia-induced bidirectional CI selects for premating isolation and therefore reinforces genetic divergence between parapatric host populations. To achieve this we combined models for Wolbachia dynamics with a well-studied reinforcement model. This new model allows us to compare the effect of bidirectional CI on the evolution of female mating preferences with a situation in which postzygotic isolation is caused by nuclear genetic incompatibilities (NI). We distinguish between nuclear incompatibilities caused by two loci with epistatic interactions, and a single locus with incompatibility among heterozygotes in the diploid phase. Our main findings are: (1) bidirectional CI and single locus NI select for premating isolation with a higher speed and for a wider parameter range than epistatic NI; (2) under certain parameter values, runaway sexual selection leads to the increase of an introduced female preference allele and fixation of its preferred male trait allele in both populations, whereas under others it leads to divergence in the two populations in preference and trait alleles; and (3) bidirectional CI and single locus NI can stably persist up to migration rates that are two times higher than seen for epistatic NI. The latter finding is important because the speed with which mutants at the preference locus spread increases exponentially with the migration rate. In summary, our results show that bidirectional CI selects for rapid premating isolation and so generally support the view that Wolbachia can promote speciation in their hosts. 相似文献
13.
Joanna D. Bundus Ravin Alaei Asher D. Cutter 《Evolution; international journal of organic evolution》2015,69(8):2005-2017
Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito‐nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic‐by‐extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito‐nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X‐bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule. 相似文献
14.
Koukou K Pavlikaki H Kilias G Werren JH Bourtzis K Alahiotis SN 《Evolution; international journal of organic evolution》2006,60(1):87-96
Speciation depends on the establishment of reproductive isolation between populations of the same species. Whether assortative mating evolves as a by-product of adaptation is a major question relevant to the origin of species by reproductive isolation. The long-term selection populations used here were originally established 30 years ago from a single cage population (originating from a maternal one) and subsequently subjected to divergent selection for tolerance of toxins in food (heavy metals versus ethanol) to investigate this question. Those populations now differ in sexual isolation and Wolbachia infection status. Wolbachia are common and widespread bacteria infecting arthropods and nematodes. Attention has recently focused on their potential role in insect speciation, due to post-mating sperm-egg incompatibilities induced by the bacteria. In this paper we examine the potential effect of Wolbachia on the level of sexual isolation. By antibiotic curing, we show that removal of Wolbachia decreases levels of mate discrimination (sexual isolation index) between populations by about 50%. Backcrossing experiments confirm that this effect is due to infection status rather than to genetic changes in the populations resulting from antibiotic treatment. Antibiotic treatment has no effect on mate discrimination level between uninfected populations. Our findings suggest that the presence of Wolbachia (or another undetected bacterial associate) act as an additive factor contributing to the level of pre-mating isolation between these Drosophila melanogaster populations. Given the ubiquity of bacterial associates of insects, such effects could be relevant to some speciation events. 相似文献
15.
16.
Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans 总被引:2,自引:0,他引:2
The effects of high temperatures, antibiotics, nutrition and larval density on cytoplasmic incompatibility caused by a Wolbachia infection were investigated in Drosophila simulans. Exposure of larvae from an infected stock to moderate doses of tetracycline led to complete incompatibility when treated females were crossed to infected males; the same doses only caused a partial restoration of compatibility when treated males were crossed to uninfected females. In crosses with treated females, there was a strong correlation between dose effects on hatch rates and infection levels in embryos produced by these females. Ageing and rearing males at a high temperature led to increased compatibility. However, exposing infected females to a high temperature did not influence their compatibility with infected males. Male temperature effects depended on conditions experienced at the larval stage but not the pupal stage. Exposure to 25 °C reduced the density of Wolbachia in embryos compared with a 19 °C treatment. Low levels of nutrition led to increased compatibility, but no effect of larval crowding was detected. These findings show the ways environmental factors can influence the expression of cytoplasmic incompatibility and suggest that environmental effects may be mediated by bacterial density. 相似文献
17.
18.
S. Van Borm T. Wenseleers J. Billen J. J. Boomsma 《Journal of evolutionary biology》2001,14(5):805-814
Wolbachia is a maternally inherited bacterium that manipulates host reproduction by inducing cytoplasmic incompatibility (CI), parthenogenesis or male killing (MK). Here, we report on a screening of seven leafcutter ant species of the genera Atta and Acromyrmex. Using Wolbachia‐specific polymerase chain reaction (PCR) primers we show that all species are infected, usually by double A + B strain infections. For Acromyrmex echinatior and A. octospinosus, a screening across all castes shows that gynes (prospective queens) have higher infection rates than workers and males. The low infection rate of workers suggests that workers lose their infection during development. This we interpret as adaptive, because a heritable symbiont does not benefit from being present in sterile workers. Both CI and MK could potentially account for the low infection rate of males. Formal theoretical models show greater support for the MK scenario in the free living species A. echinatior and A. octospinosus but indicate that Wolbachia in the social parasite A. insinuator may cause CI, supporting a scenario of sympatric speciation of the social parasite. We conclude that Wolbachia represents a previously unrecognized source of reproductive conflict in leafcutter ant colonies. 相似文献
19.
The maternally inherited bacterium Wolbachia pipientis infects 25-75% of arthropods and manipulates host reproduction to improve its transmission. One way Wolbachia achieves this is by inducing cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females are inviable. Infected males suffer reduced fertility through CI and reduced sperm production. However, Wolbachia induce lower levels of CI in nonvirgin males. We examined the impact of Wolbachia on mating behaviour in male Drosophila melanogaster and D. simulans, which display varying levels of CI, and show that infected males mate at a higher rate than uninfected males in both species. This may serve to increase the spread of Wolbachia, or alternatively, may be a behavioural adaptation employed by males to reduce the level of CI. Mating at high rate restores reproductive compatibility with uninfected females resulting in higher male reproductive success thus promoting male promiscuity. Increased male mating rates also have implications for the transmission of Wolbachia. 相似文献
20.
The maternally inherited bacterium, Wolbachia pipientis, manipulates host reproduction by rendering uninfected females reproductively incompatible with infected males (cytoplasmic incompatibility, CI). Hosts may evolve mechanisms, such as mate preferences, to avoid fitness costs of Wolbachia infection. Despite the potential importance of mate choice for Wolbachia population dynamics, this possibility remains largely unexplored. Here we model the spread of an allele encoding female mate preference for uninfected males alongside the spread of CI inducing Wolbachia. Mate preferences can evolve but the spread of the preference allele depends on factors associated with both Wolbachia infection and the preference allele itself. Incomplete maternal transmission of Wolbachia, fitness costs and low CI, improve the spread of the preference allele and impact on the population dynamics of Wolbachia. In addition, mate preferences are found in infected individuals. These results have important consequences for the fate of Wolbachia and studies addressing mate preferences in infected populations. 相似文献