首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Litterfall in a mixed conifer-angiosperm temperate forest in northern New Zealand was traced for 5 years to determine the patterns of litter production and turnover for conifer and angiosperm components of the forest. Basal area and above-ground biomass was shared approximately equally between conifer (mostly Agathis australis; New Zealand kauri) and angiosperm species (plus tree ferns). The five-year mean annual litterfall, excluding macro-litter, was 7.76± 0.39(SEM) t ha?1 and ranged from 6.77±0.70 t ha?1 in 1983–4 to 8.79±1.00 t ha?1 in 1987–8. Mean monthly litterfall showed a strong seasonal pattern with low rates in winter and early spring, increasing to a peak in early autumn. There were major differences in the nature and timing of litterfall between the conifer and angiosperm fractions. Angiosperm leaf litter reached a maximum in early summer, while conifer litterfall showed highest rates for leaves, twigs and cone scales in late summer-autumn. Conifer reproductive structures (strobili and cone scales) contributed from 13 to 21% of total litterfall, a value high relative to other temperate forests. However, conifer leaf turnover was low relative to that for the angiosperms. Size of the microlitter store was 16.16±1.97 t ha?1 prior to conifer cone fall, and 18.70±2.02 t ha?1 following it, and conifer litter made up 76–78% of the total litter store. The estimated mean annual decomposition constant, k, was 0.39 overall, 0.33 for conifer leaf litter and 0.71 for angiosperm leaf litter, values which agree well with previously published rates for decomposition in this forest stand. Differences in the costs of biomass production and rates of turnover, as measured by litterfall and decomposition, may help to explain the functional coexistence of conifers and angiosperms in mixed forests.  相似文献   

2.
Abstract. This study deals with stand dynamics over a 6‐yr period in a conifer/broad‐leaved mixed forest in Hokkaido, northern Japan. The annual rates of gap formation and recovery were 81.3 m2/ha and 66.7 m2/ha, respectively and turnover time of the canopy was 125 yr. The recruitment processes of the component species in this cool‐temperate forest were governed by different canopy types: gap, canopy edge and closed canopy. Magnolia obovata regenerated in canopy edges, and Acer mono and Prunus ssiori regenerated in canopy edges and gaps. The results suggested that the mosaic structure made up of closed canopy, canopy edge and gap was related to various regeneration niches. Abies sachalinensis had high mortality rates, initiating gap expansion. The transition probabilities from closed canopy or canopy edge to gap for deciduous broad‐leaved trees were lower than for A. sachalinensis, which implies that the difference in degeneration patterns of conifer and broad‐leaved canopies contributes to the heterogeneity of spatial structure in the mixed forests. Spatial dynamics were determined by a combination of gap expansion by A. sachalinensis (neighbour‐dependent disturbance) and gap formation by deciduous broad‐leaved trees (random disturbance).  相似文献   

3.
Abstract. Patterns of mortality, recruitment, and forest turnover were investigated using permanent plot data from temperate forests in 14 localities throughout New Zealand. Tree mortality and recruitment rates were calculated from tagged trees ≥ 10 cm diameter at 1.4 m on individual 400 m2 plots, and turnover rates were calculated as the mean of mortality and recruitment rates. Turnover rates (1.4% per year) were very similar to those recorded for tropical forests (i.e. 1.5% per year). As was shown in tropical forests, we also found significant relationships between forest turnover and species richness. In New Zealand forests there was also a decrease in species richness and turnover rates with increasing latitude. Although species richness is well known to decline with latitude, our study provides support for a possible link between seasonality and disturbance with tree turnover and species diversity. While tree mortality and recruitment rates were approximately in balance at some localities, in others there were imbalances between mortality and recruitment rates.  相似文献   

4.
The conifer Agathis australis (New Zealand kauri; Araucariaceae) has a significant influence on soil processes beneath its canopies, reducing soil pH, stalling nitrogen cycling processes, and sometimes forming podzols. Distinctive plant species assemblages have been anecdotally observed to occur in association with A. australis stands; however, the authenticity of these proposed associations has not been formally assessed. Owing to the effects of A. australis on its soil environment and the recorded vegetation patterns, we hypothesized that this species may act as a foundation species, playing a significant role in structuring plant community composition in its vicinity. To test this, we investigated the influence of proximity to A. australis on plant community composition at stand and individual tree scales. We also investigated compositional variation with distance from the conifer Dacrydium cupressinum (rimu, Podocarpaceae) within the same forests to directly compare A. australis effects to those of another large conifer. We examined changes in stand composition relative to the abundance of each of these conifers at two forests, and measured changes in environmental conditions and plant composition with increasing distance from mature individuals at one of the same and one other study site. The organic soil formed beneath A. australis individuals was highly acidic, with high levels of NH4‐N, carbon and total nitrogen, but low levels of NO3‐N. We recorded a difference in species composition in the vicinity of A. australis compared to forest without this species in the same environment, describing three groups of species: stress‐tolerant species dependent on the presence of A. australis within mature forest; those dependent on areas with A. australis absent; and those with distributions unaffected by A. australis presence. Such effects on the abiotic and biotic environments were not recorded in the vicinity of individuals of D. cupressinum. These results highlight the substantial effect that A. australis has in enhancing landscape‐scale habitat heterogeneity and influencing overall forest diversity.  相似文献   

5.
Although succession may follow multiple pathways in a given environment, the causes of such variation are often elusive. This paper describes how changes in fire interval mediate successional trajectory in conifer-dominated boreal forests of northwestern Canada. Tree densities were measured 5 and 19 years after fire in permanent plots and related to pre-fire vegetation, site and fire characteristics. In stands that were greater than 75 years of age when they burned, recruitment density of conifers was significantly correlated with pre-fire species basal area, supporting the expectation of stand self-replacement as the most common successional pathway in these forests. In contrast, stands that were under 25 years of age at the time of burning had significantly reduced conifer recruitment, but showed no change in recruitment of trembling aspen (Populus tremuloides). As a result, young-burned stands had a much higher probability of regenerating to deciduous dominance than mature-burned stands, despite the dominance of both groups by spruce (Picea mariana and Picea glauca) and pine (Pinus contorta) before the fire. Once initiated, deciduous-dominated stands may be maintained across subsequent fire cycles through mechanisms such as low on-site availability of conifer seed, competition with the aspen canopy, and rapid asexual regeneration of aspen after fire. We suggest that climate-related increases in fire frequency could trigger more frequent shifts from conifer to deciduous-dominated successional trajectories in the future, with consequent effects on multiple ecosystem processes.  相似文献   

6.
Abstract. Small-scale canopy openings are being increasingly recognized for their importance in boreal forest stand development. Yet more work is necessary to understand their effects on seedling growth. This study investigated the effect of different degrees of canopy opening (all trees cut, conifers cut, conifers girdled and control quadrats) in different stand types on Abies balsamea seedling recruitment, growth and architecture. The lack of a treatment effect on seedling establishment suggests that gaps primarily affect advance regeneration. In the first year after treatment the seedlings in the cut blocks (both conifer cut and all trees cut) responded with an increase in height growth. Changes in the leader to lateral branch ratio were also significant. Continued architectural change in terms of number of branches produced did not occur until after two years had passed. Although not significantly different from the control, increases can be observed in all measurements for the girdled treatment. It is therefore concluded that the growth response of advance regeneration is more important following canopy opening than new seedling recruitment and that seedling performance is greatest where degree of opening is greatest.  相似文献   

7.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

8.
This study compares demographic parameters and population dynamics for high disturbance (maquis) and low disturbance (rain forest) environments of the montane conifer, Araucaria laubenfelsii, in New Caledonia. The establishment, growth, survival and reproduction of ca 2500 individuals were followed in permanent plots over 10 yr. Growth and survival rates for A. laubenfelsii show that it is a long-lived, slow growing tree, with evidence of suppression in the sapling size classes in mature rain forest. Growth rates for all size classes are generally faster in maquis than rain forest. Transition matrix analyses estimated positive rates of population increase (λ values>1), with populations expanding in maquis, and stable in mature forest. Araucaria laubenfelsii is able to regenerate continuously in maquis and early successional rain forest, but recruitment is limited in older stands. Life table response experiment analyses showed that reproduction, and transitions from sapling to mature tree stage, contributed positively to λ in maquis, but negatively in forest. Araucaria laubenfelsii on Mont Do can be considered a long-lived pioneer, with early maquis colonizers helping to drive succession from maquis to forest. While opportunities for recruitment decline with time as rain forest sites develop a closed canopy, occasional gap phase recruitment, combined with disturbance by cyclones, landslides and fire, provide opportunities to ensure species persistence. Understanding contrasting population dynamics of A. laubenfelsii in maquis and rain forest will better facilitate conservation management of this species, particularly given current high rates of land conversion and degradation in New Caledonia. Abstract in French is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

9.
This study surveys the micromorphological surface structure of the leaves of the conifer genusAgathis (Araucariaceae) from throughout the range of the genus (Malaysia to New Zealand and Fiji) as seen with the scanning electron microscope. These data confirm that the vegetative parts ofAgathis are taxonomically highly conservative, but suggest the Melanesian and New Zealand elements to be distinctive from those of the rest of the genus, and from one another. Conclusions are compared with those that have been derived from studies based on other characters.  相似文献   

10.

Aim

The impact of climate change on forest biodiversity and ecosystem services will be partly determined by the relative fortunes of invasive and native forest trees under future conditions. Aotearoa New Zealand has high conservation value native forests and one of the world's worst invasive tree problems. We assess the relative effects of habitat redistribution on native Nothofagus and invasive conifer (Pinaceae) species in New Zealand as a case study on the compounding impacts of climate change and tree invasions.

Location

Aotearoa New Zealand.

Methods

We use species distribution models (SDMs) to predict the current and future distribution of habitat for five native Nothofagus species and 13 invasive conifer species under two 2070 climate scenarios. We calculate habitat loss/gain for all species and examine overlap between the invasive and native species now and in future.

Results

Most species will lose habitat overall. The native species saw large changes in the distribution of habitat with extensive losses in North Island and gains mostly in South Island. Concerningly, we found that most new habitat for Nothofagus was also suitable for at least one invasive species. However, there were refugia for the native species in the wetter parts of the climate space.

Main Conclusion

If the predicted changes in habitat distribution translate to shifts in forest distribution, it would cause widespread ecological disruption. We discuss how acclimation, adaptation and biotic interactions may prevent/delay some changes. But we also highlight that the poor establishment capacity of Nothofagus, and the contrasting ability of the conifers to invade, will present persistent conservation challenges in areas of both new habitat and forest retreat. Pinaceae are problematic invaders globally, and our results highlight that control of invasions and active native forest restoration will likely be key to managing forest biodiversity under future climates.  相似文献   

11.
Abstract Despite its small size, New Caledonia has a flora which includes 43 endemic species of conifer. This study examines the stand structure of the New Caledonian conifer, Araucaria laubenfelsii Corbasson, a species which occurs on ukramafic soils as an emergent tree in rainforest and in an unusual structural association with maquis vegetation. Fire and cyclone blow-down are the primary disturbances in the maquis, but fire is infrequent in the rainforests which is evident from the low proportion of fire scarred trees. Preliminary results show abundant seedlings and saplings of A. laubenfelsii both in maquis and forest. Size class distributions of individuals suggest that the species is continuously regenerating in the maquis and immature forests. Variability in the stand structure in maquis communities reflects the probable patchy nature of disturbance from small-scale fires and blow-down from tropical cyclones. In mature forests, Nothofagus codonandra (Baillon) Steenis is the dominant canopy species and ‘other tree species’ are continuously regenerating, while the size class distributions and basal area of A. laubenfelsii suggest that there is, at present, limited regeneration of this species. Tree ring counts indicate that individuals in forest areas grow at a slower rate than those in maquis, but attain greater age, probably as a result of greater protection from fire.  相似文献   

12.
Abstract. Structural and compositional changes were analysed over the course of 400+ yr of post‐fire succession in the sub‐boreal forests of west‐central British Columbia. Using a chronosequence of 57 stands ranging from 11 to 438 yr in age, we examined changes in forest structure and composition with complementary PCA and DCA ordination techniques. To determine stand ages and timing of tree recruitment, approximately 1800 trees were aged. Most early successional forests were dominated by Pinus contorta, which established rapidly following fire. Abies lasiocarpa and Picea glauca × engel‐mannii were also able to establish quickly, but continued to establish throughout the sere. Few Pinus contorta survived beyond 200 yr, resulting in major changes in forest structure. In some stands P. contorta never established, which led to considerable variation among stands less than 200 yr old. The oldest forests converged on dominance by Abies lasiocarpa. Vascular plant diversity decreased during succession whereas canopy structure became more complex as gap dynamics developed. Although these sub‐boreal forests contain few tree species, successional changes were pronounced, with structure changing more than composition across the chronosequence.  相似文献   

13.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   

14.

Background and Aims

Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests.

Methods

By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200–3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras.

Key Results

Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer–angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures.

Conclusions

The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments results in a sparser upper canopy, which allows shade-intolerant conifers to co-occur with angiosperm trees either as emergents or as codominants in the open canopy.  相似文献   

15.
Abstract. The size structure of the endemic New Caledonian conifer Agathis ovata is reported for sample stands in forest and maquis from three areas on ultramafic substrates in the south of the main island (Grand Terre). In closed forest Agathis ovata is typically represented by a low density of emergent adult trees with only limited evidence of seedling recruitment. In maquis, Agathis ovata is represented by individuals of all sizes, with seedlings and saplings abundant in most sample stands. Preliminary evidence from tree-ring studies indicates that rings may be annual. Estimated diameter growth rate is about 2 mm y?1 for trees ≥ 10 cm d.b.h., and ring counts suggest tree ages of up to 400 years in maquis and 500 years in forest. Agathis ovata, and three other members of the Araucariaceae found in New Caledonia (Araucaria laubenfelsii, A. montana and A. rulei), are the only tree species which regularly occur scattered in maquis in this way, creating an unusual structural assemblage. No angiosperm tree species show this behaviour. The circumstances under which the Agathis ovata– maquis stands arise and are maintained are the subject of further investigation. Preliminary evidence for tree ages indicates that these stands predate European arrival in New Caledonia and so are not the result of recent increases in the frequency and intensity of human disturbances. The presence of fire scars on many individuals, and location of most stands on slopes and spurs with outcropping laterite (cuirasse), suggests that this assemblage may owe its existence to the interplay of fire regime, topography and rockiness, and a resistance to fire in Agathis ovata which increases with plant size and age.  相似文献   

16.
Abstract. 14 old, unlogged, Picea-dominated stands in the moist cool Sub-Boreal Spruce biogeoclimatic subzone of central British Columbia, Canada, were sampled to describe canopy heterogeneity, regeneration patterns and tree population age structures. These stands are composed of Picea engelmannii × glauca hybrids, Abies lasiocarpa and lesser amounts of Pinus contorta and Populus tremuloides, and had survived 124–343 yr since the last stand-destroying wildfire. Canopy cover was patchy and highly variable (ranging from 30.5 % to 86.4 %) but was not significantly related to stand age. Vertical canopy structure was less variable, reflecting the shade-tolerance and live crown ratios (length of live canopy expressed relative to tree height) of component species: 18.8 % for Populus, 20.2 % for Pinus, 46.7 % for Picea and 51.4 % for Abies. Individual stands varied considerably in their population structures and in their stand development trajectories, yet some patterns are evident. Survivors of the initial post-disturbance cohort of trees took 51 to 118 yr (mean = 80, s.d. = 20) to establish. Some stands had all tree species present during stand initiation, while other stands indicated early successional roles for Populus and Pinus, or a late successional role for Abies. Abies recruitment, while often slow in the beginning, occurs uniformly throughout the history of most stands, reflecting the high shade-tolerance of this species. Picea is often recruited in high densities early in stand development, and then (after long periods of exclusion) may be displaced by Abies in some stands but maintains itself in others. Minor, single-tree disturbances (due to bark beetles, root rot, and windthrow) were important in accelerating the reinitiation of Picea in the understory. Results thus suggest that stands from this region can be self-perpetuating in the absence of fire. Yet, post-fire tree populations still clearly dominate these spruce-fir forests, for only the oldest stand had greater basal area in the replacement cohort than in the initial cohort.  相似文献   

17.
Cao  K.-F.  Ohkubo  T. 《Plant Ecology》1999,145(2):281-290
Beech forests occur widely in the mountains on the main island of Japan. Wind storm is the major regime that causes canopy disturbances in these forests. Fagus crenata Blume is a dominant, and Acer mono Maxim., also a canopy species, co-occurs in these forests. It has been suggested that A. mono is less shade-tolerant than F. crenata. Using dendrochronological data, this study describes suppression and release histories during canopy recruitment for these two species in two old-growth beech forests (at Takahara and Kaname) and provides support for the shade tolerance suggestion given above. In addition, disturbance histories over the past 130 or 160 yr in the two forests have been reconstructed. At Takahara, the forest experienced more frequent wind storms, was about 10–15 m shorter and less dense than that at Kaname. Kaname is in a heavy snow region. On average, F. crenata experienced 1.4 and 2.5 definable episodes of suppression during canopy recruitment at Takahara and Kaname, respectively. At Kaname, the average length of total suppression was 66 yr, and 34 yr at Takahara. On average, at final release, the beech trees had a diameter of 25 cm and an age of about 125 yr old, which were twice as large and twice as old as those at Takahara. In contrast, at the two sites, A. mono experienced similar average numbers of episodes (1.6 episodes at Takahara and 1.8 episodes at Kaname) and similar average length of total suppression (37 yr at Takahara and 30 yr at Kaname) during canopy recruitment. At both sites, at final release, the maple had an average diameter of about 18 cm and an average age of some 70 yr. Our results have revealed that F. crenata is able to be tolerant of a longer shade suppression than A. mono. At Kaname, the canopy disturbances deduced from tree-ring data were more intense or frequent than those at Takahara, This contrasted with occurrences of wind storms at the two sites.  相似文献   

18.
Abstract. Dynamics of a Sequoia sempervirens forest in northern California were studied with long‐term plot data (1.44 ha) and recent transect data. The study was conducted in an old stand (> 1100 yr) on alluvial flats. Over three decades (1972–2001), changes in the composition and structure of the tree stratum were minor. Sequoia maintained a broad distribution of stem diameters throughout the period. Annual rates of Sequoia mortality (0.0029) and ingrowth (0.0029) were low, reflecting the great longevity of Sequoia and the slow canopy turnover of the study forest. Transect data also indicated a low frequency of canopy gap disturbance (≤ 0.4% of total land area per yr), but gap size was potentially large (> 0.1 ha) and the fraction of area in gaps (ca. 20%) was similar to other temperate forests. Regeneration quadrats sampled along transects, in gap centers, and on logs revealed that Sequoia regeneration is elevated at gap edges. The longevity of Sequoia and its response to gap disturbances ensure that it will remain a dominant species in the study forest.  相似文献   

19.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

20.
Abstract. The endemic New Caledonian conifer Agathis ovata occurs as an emergent tree in fire‐prone shrublands (maquis), and fire‐sensitive rainforest. Growth, survivorship and recruitment over 5 yr were compared for populations from forest and maquis on ultramafic substrates in New Caledonia to investigate whether demographic behaviour varied in response to the strongly contrasting forest and shrubland environments. Growth of seedlings and of small (30–100 cm height) and large (100 cm height; 5 cm DBH) saplings was slow, but varied significantly among stages, site types and years. The greatest difference in growth rates was among stages, seedlings growing 0.34 cm.yr?1, small saplings 1.06 cm.yr?1 and large saplings 2.13 cm.yr?1. Tree DBH increased by only 0.05 cm.yr?1 and, based on these rates, individuals with DBH of 30 cm are estimated to be more than 700 yr old. Few trees (3.5%) produced cones in any year and seedling recruitment was low, but some recruitment was recorded each year in both maquis and forest. Rates of recruitment per parent were highest in forest (1.28.yr?1, cf 0.78.yr?1), but the higher density of trees in maquis meant that overall recruitment was greater there (92 ha?1.yr?1, cf 56 ha?1.yr?1). Seedling mortality ranged from 0.9 to 2.9% among years with no significant difference between maquis and forest. No sapling mortality was recorded, but annual tree mortality ranged from 0 to 1.4%. Evidence from a recently burned site indicated that while trees may survive fire, seedlings and saplings do not. Post‐fire seedling recruitment per ha from surviving trees was four times lower than in unburned sites, but growth rates were four times higher. Similar demographic attributes, including high survivorship, low growth rate and low rates of recruitment over a long reproductive life, characterize Agathis ovata populations in both maquis and rainforest in New Caledonia and are indicative of a broad tolerance of light environments that is unusual among tree species. These demographic attributes help to explain the long‐term persistence of the species in these strongly contrasting habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号