首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sympatric species are expected to differ in ecological requirements to minimize niche overlap and avoid competition. Here we assess the trophic interactions among three coexisting dolphin species from southern Brazil: the franciscana dolphin (Pontoporia blainvillei), the Guiana dolphin (Sotalia guianensis), and the Lahille's bottlenose dolphin (Tursiops truncatus gephyreus). We evaluated temporal variation in carbon (δ13C) and nitrogen (δ15N) isotope values of bone collagen to examine potential dietary shifts resulting from increased fishing activity over the past three decades. We estimated the degree of niche overlap among these species and the contribution of potential prey sources to their diet. δ15N values were consistent among species and across years, while δ13C values increased for Guiana dolphins and decreased for bottlenose dolphins, suggesting changes in diet and/or foraging habitats through time. The similar δ13C and δ15N values and the high niche overlap between Guiana and bottlenose dolphins indicate that these species are primarily feeding on demersal prey. The franciscana diet is primarily composed of pelagic prey, resulting in a lower niche overlap in comparison with the other dolphin species. Our study provides further information about the foraging ecology of this unique dolphin community in southern Brazil with implications for its management and conservation.  相似文献   

2.

Aim

Understanding the distribution of marine organisms is essential for effective management of highly mobile marine predators that face a variety of anthropogenic threats. Recent work has largely focused on modelling the distribution and abundance of marine mammals in relation to a suite of environmental variables. However, biotic interactions can largely drive distributions of these predators. We aim to identify how biotic and abiotic variables influence the distribution and abundance of a particular marine predator, the bottlenose dolphin (Tursiops truncatus), using multiple modelling approaches and conducting an extensive literature review.

Location

Western North Atlantic continental shelf.

Methods

We combined widespread marine mammal and fish and invertebrate surveys in an ensemble modelling approach to assess the relative importance and capacity of the environment and other marine species to predict the distribution of both coastal and offshore bottlenose dolphin ecotypes. We corroborate the modelled results with a systematic literature review on the prey of dolphins throughout the region to help explain patterns driven by prey availability, as well as reveal new ones that may not necessarily be a predator–prey relationship.

Results

We find that coastal bottlenose dolphin distributions are associated with one family of fishes, the Sciaenidae, or drum family, and predictions slightly improve when using only fish versus only environmental variables. The literature review suggests that this tight coupling is likely a predator–prey relationship. Comparatively, offshore dolphin distributions are more strongly related to environmental variables, and predictions are better for environmental-only models. As revealed by the literature review, this may be due to a mismatch between the animals caught in the fish and invertebrate surveys and the predominant prey of offshore dolphins, notably squid.

Main Conclusions

Incorporating prey species into distribution models, especially for coastal bottlenose dolphins, can help inform ecological relationships and predict marine predator distributions.  相似文献   

3.
A bottlenose dolphin community was studied from small inflatable craft from 1987 to 1994 in a relatively large area (about 800 km2) east of the islands of Loˇsinj and Cres, northern Adriatic Sea. A total of 106 individuals were photoidentified based on natural permanent marks on their dorsal fins. Most of the dolphins were resighted on a regular basis, indicating a high level of year-round site fidelity, although their range was evidently greater than the chosen study area. Dolphin density was highly variable and considerably lower than for most well-known bottlenose dolphin communities. Groups averaged seven individuals, with a mode of two. Groups entirely composed of adults were the smallest, groups with calves the largest. Group fluidity was high, seasonal and yearly changes in mean group size being also considerable. Summer was the peak calving season, with a striking variation in the number of births on alternate years. Poor evidence of shark predation was found. The social organization of this dolphin community seemed to be highly flexible, possibly as an adaptation to cope with environmental changes as well as with a limited and variable availability of prey.  相似文献   

4.
Anthropogenic impacts in estuarine systems can influence marine mammal habitat use, population dynamics, fitness, and mortality events. The objective was to examine habitat use among the resident common bottlenose dolphin (Tursiops truncatus) population inhabiting the Indian River Lagoon, Florida, and the influences of variation in environmental factors and prey availability in 2003–2015. We utilized photo-identification surveys, stratified random samples of prey, and environmental variables collected monthly. Kernel density estimation was used to determine the magnitude-per-unit area of dolphins across the IRL by wet and dry seasons each year, the values were used as a response variable in classification and regression tree analyses with fish community and environmental variables as predictors. Spatial patterns in dolphin density in the IRL were associated with salinity and dissolved oxygen levels, which are in part associated with freshwater discharges of nutrient and algae laden waters from the region's storm water management system. These findings isolate locations of concern for management of dolphin habitat, and anthropogenic drivers of dolphin distributions requiring further research.  相似文献   

5.
The extent to which prey abundance influences both bottlenose dolphin foraging behavior and group size in the presence of human activities has not previously been studied.The primary aim of this study was to identify and quantify how wild bottlenose dolphins respond,individually and as groups,to the relative abundance of prey around a fish farm.Detailed views of dolphins' behavior were obtained by focal following individual animals whilst simultaneously collecting surface and underwater behavioral data.A to...  相似文献   

6.
We investigated patterns of abundance and distribution for coastal migratory Atlantic bottlenose dolphins (Tursiops truncatus) that appear seasonally in the nearshore waters of Virginia Beach, Virginia. The study was conducted along 24 km of shoreline at the southern point of the Chesapeake Bay mouth from April 1994 to March 1995. This is the first study to investigate the relationship between the abundance of coastal migratory dolphins and factors that might affect their movement. A profile analysis of variance revealed significant differences in local abundance and distribution throughout the year. Dolphin number was positively correlated with water temperature and not correlated with photoperiod. Although prey distribution and abundance are two factors thought to affect dolphin presence, in this study the relationship between these two factors and dolphin abundance was unclear. Greater numbers of dolphins were found in the ocean section of the study area. However, significantly higher ratios of neonatal dolphins were observed in the bay section, suggesting the bay serves as a nursery area. The observed relationship between local dolphin abundance and environmental factors in Virginia may provide insight into dolphin distribution and migration along the Atlantic coast of the United States.  相似文献   

7.
Examination of the Harderian gland structure of the Black Sea bottlenose dolphin, Tursiops truncatus ponticus, at macroscopic, microscopic, and electron microscopic levels shows significant sexual dimorphism. The epithelial cells of male and female glands are different cell types, capable of producing chemically different products. Secretory cells in both sexes contain secretion granules that produce a secretion consisting mainly of proteins and carbohydrates, but thought to be sex-specific in composition. The female glands also contain lipid secretion granules. It is suggested that in the bottlenose dolphin the Harderian gland functions to produce sexually distinct pheromones and may have other physiological activities, e.g., participating in local immunological or endocrine-related reactions. © 1994 Wiley-Liss, Inc.  相似文献   

8.

We report the first recorded interactions between bottlenose dolphin (Tursiops truncatus) and Commerson’s dolphins (Cephalorhynchus commersonii). The diurnal behavioral patterns of bottlenose dolphins in Bahía Engaño, Argentina, were similar to those described for other coastal populations around the world. The majority of the feeding bouts were recorded near the mouth the Chubut River. When not feeding near the river, bottlenose dolphins generally swam along the coast, and interactions with Commerson’s dolphins were recorded very close to the shore on two occasions during a 3-year period. In the first event, both species were feeding on a fish school. The second interaction was aggressive in nature, involving one juvenile and three adult bottlenose dolphins with several Commerson’s dolphins. Two of the adult bottlenose dolphins attacked the Commerson’s dolphins. We propose that the observed behavior represented defense of the juvenile bottlenose dolphin.

  相似文献   

9.
10.
The bottlenose dolphin (Tursiops truncatus Montagu, 1821) is a regularly observed species in the Mediterranean Sea, but its network organization has never been investigated on a large scale. We described the network macrostructure of the bottlenose dolphin (meta)population inhabiting the Pelagos Sanctuary (a wide protected area located in the north-western portion of the Mediterranean basin) and we analysed its connectivity in relation to the landscape traits. We pooled effort and sighting data collected by 13 different research institutions operating within the Pelagos Sanctuary from 1994 to 2011 to examine the distribution of bottlenose dolphins in the Pelagos study area and then we applied a social network analysis, investigating the association patterns of the photo-identified dolphins (806 individuals in 605 sightings). The bottlenose dolphin (meta)population inhabiting the Pelagos Sanctuary is clustered in discrete units whose borders coincide with habitat breakages. This complex structure seems to be shaped by the geo-morphological and ecological features of the landscape, through a mechanism of local specialization of the resident dolphins. Five distinct clusters were identified in the (meta)population and two of them were solid enough to be further investigated and compared. Significant differences were found in the network parameters, suggesting a different social organization of the clusters, possibly as a consequence of the different local specialization.  相似文献   

11.
Because cetaceans are difficult to study in the wild, little is known about how they use their sounds in their natural environment. Only the recent development of passive acoustic localization systems has enabled observations of the communication behaviour of individuals for correlation with their surface behaviour. Using such a system, I show that bottlenose dolphins in the Moray Firth, Scotland, produce low-frequency bray calls which are clearly correlated with feeding on salmonids. The production of these calls is followed by fast approaches by conspecifics in the area. In animals which use sound as a foraging tool, it is difficult to distinguish between food calls which have evolved because of their role in attracting conspecifics, and food manipulation or searching calls which may attract conspecifics as a by-product. However, the low-frequency structure of the bottlenose dolphin bray suggests that it evolved because of a role in manipulating prey rather than in attracting conspecifics. This conclusion suggests that dolphins exploit the perceptual systems of their prey to facilitate capture.  相似文献   

12.
Residence patterns of inshore bottlenose dolphins ( Tursiops truncatus ) in the Stono River estuary, Charleston County, South Carolina were investigated as part of a larger effort to better understand stock structure of these dolphins along the east coast of the United States. Eighty-seven small-boat surveys for bottlenose dolphins were conducted from October 1994 through January 1996. Dolphins were sighted during all surveys. Approximately 304 h were spent surveying the study area; 64% ( n = 196 h) of this time was spent observing and videotaping dolphins. A catalog, containing 112 individually identified dolphins was compiled. Thirty-two percent ( n = 36) of identified dolphins were sighted once, while 28% ( n = 31) were sighted five or more times. Nineteen percent ( n = 21) of identified dolphins were determined to be year-round residents; eight percent ( n = 9) seasonal residents. The majority (64%, n = 72) of identified dolphins were sighted in the study area during a single season or in two consecutive seasons and were classified as transients. This study documents the northernmost known site of a resident bottlenose dolphin community on the east coast of the United States, suggesting a complex bottlenose dolphin stock structure.  相似文献   

13.
The studies on the variation of acoustic communication in different species have provided insight that genetics, geographic isolation, and adaptation to ecological and social conditions play important roles in the variability of acoustic signals. The dolphin whistles are communication signals that can vary significantly among and within populations. Although it is known that they are influenced by different environmental and social variables, the factors influencing the variation between populations have received scant attention. In the present study, we investigated the factors associated with the acoustic variability in the whistles of common bottlenose dolphin (Tursiops truncatus), inhabiting two Mediterranean areas (Sardinia and Croatia). We explored which factors, among (a) geographical isolation of populations, (b) different environments in terms of noise and boat presence, and (c) social factors (including group size, behavior, and presence of calves), were associated with whistle characteristics. We first applied a principal component analysis to reduce the number of collinear whistle frequency and temporal characteristics and then generalized linear mixed models on the first two principal components. The study revealed that both geographic distance/isolation and local environment are associated with whistle variations between localities. The prominent differences in the acoustic environments between the two areas, which contributed to the acoustic variability in the first principal component (PC1), were found. The calf's presence and foraging and social behavior were also found to be associated with dolphin whistle variation. The second principal component (PC2) was associated only with locality and group size, showing that longer and more complex tonal sound may facilitate individual recognition and cohesion in social groups. Thus, both social and behavioral context influenced significantly the structure of whistles, and they should be considered when investigating acoustic variability among distant dolphin populations to avoid confounding factors.  相似文献   

14.
The authors review the literature on bottlenose dolphin ecology, behavior and social organization, focusing on data collected on free-ranging animals. Most bottlenose dolphins studied to date have had definable home ranges, and behavioral, morphological and biochemical information indicates discrete stocks in some areas. Bottlenose dolphins appear to form relatively permanent social groups based on sex and age. Mother—calf bonds are long-lasting. Movement patterns are extremely variable from location to location but are relatively predictable at any given site. Food resources are one of the most important factors affecting movements. Bottlenose dolphin behavior is very flexible, and these dolphins are generally active day and night. Feeding peaks in the morning and afternoon have been observed at several sites. Social behavior is an important component of daily activities. Sharks are the most significant predator on bottlenose dolphins in most areas, but captive and wild studies show that dolphins and sharks frequently live in harmony as well. Human activities may be helpful, harmful or neutral to bottlenose dolphins, but interactions with humans are frequent for these coastal cetaceans.  相似文献   

15.
  • 1 Bottlenose dolphins Tursiops truncatus are amongst the best‐known cetaceans. In the Mediterranean Sea, however, modern field studies of cetaceans did not start until the late 1980s. Bottlenose dolphins have been studied only in relatively small portions of the basin, and wide areas remain largely unexplored.
  • 2 This paper reviews the ecology, behaviour, interactions with fisheries and conservation status of Mediterranean bottlenose dolphins, and identifies threats likely to have affected them in historical and recent times.
  • 3 Whilst intentional killing was probably the most important cause of mortality until the 1960s, important ongoing threats include incidental mortality in fishing gear and the reduced availability of key prey caused by overfishing and environmental degradation throughout the region. Additional potential or likely threats include the toxic effects of xenobiotic chemicals, epizootic outbreaks, direct disturbance from boating and shipping, noise, and the consequences of climate change.
  • 4 The flexible social organization and opportunistic diet and behaviour of bottlenose dolphins may allow them to withstand at least some of the effects of overfishing and habitat degradation. However, dolphin abundance is thought to have declined considerably in the region and management measures are needed to prevent further decline.
  • 5 Management strategies that could benefit bottlenose dolphins, such as sustainable fishing, curbing marine pollution and protecting biodiversity, are already embedded in legislation and treaties. Compliance with those existing commitments and obligations should be given high priority.
  相似文献   

16.
Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.  相似文献   

17.
Mixed‐species associations are temporary associations between individuals of different species that are often observed in birds, primates and cetaceans. They have been interpreted as a strategy to reduce predation risk, enhance foraging success and/or provide a social advantage. In the archipelago of the Azores, four species of dolphins are commonly involved in mixed‐species associations: the common dolphin, Delphinus delphis, the bottlenose dolphin, Tursiops truncatus, the striped dolphin, Stenella coeruleoalba, and the spotted dolphin, Stenella frontalis. In order to understand the reasons why dolphins associate, we analysed field data collected since 1999 by research scientists and trained observers placed onboard fishing vessels. In total, 113 mixed‐species groups were observed out of 5720 sightings. The temporal distribution, habitat (water depth, distance to the coast), behaviour (i.e. feeding, travelling, socializing), size and composition of mixed‐species groups were compared with those of single‐species groups. Results did not support the predation avoidance hypothesis and gave little support to the social advantage hypothesis. The foraging advantage hypothesis was the most convincing. However, the benefits of mixed‐species associations appeared to depend on the species. Associations were likely to be opportunistic in the larger bottlenose dolphin, while there seemed to be some evolutionary constraints favouring associations in the rarer striped dolphin. Comparison with previous studies suggests that the formation of mixed‐species groups depends on several environmental factors, and therefore may constitute an adaptive response.  相似文献   

18.
19.
Large‐scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large‐scale variability on resident marine top predator populations. We examined the effect of climate variability on the abundance and temporary emigration of a resident bottlenose dolphin (Tursiops aduncus) population off Bunbury, Western Australia (WA). This population has been studied intensively over six consecutive years (2007–2013), yielding a robust dataset that captures seasonal variations in both abundance and movement patterns. In WA, ENSO affects the strength of the Leeuwin Current (LC), the dominant oceanographic feature in the region. The strength and variability of the LC affects marine ecosystems and distribution of top predator prey. We investigated the relationship between dolphin abundance and ENSO, Southern Annular Mode, austral season, rainfall, sea surface salinity and sea surface temperature (SST). Linear models indicated that dolphin abundance was significantly affected by ENSO, and that the magnitude of the effect was dependent upon season. Dolphin abundance was lowest during winter 2009, when dolphins had high temporary emigration rates out of the study area. This coincided with the single El Niño event that occurred throughout the study period. Coupled with this event, there was a negative anomaly in SST and an above average rainfall. These conditions may have affected the distribution of dolphin prey, resulting in the temporary emigration of dolphins out of the study area in search of adequate prey. This study demonstrated the local effects of large‐scale climatic variations on the short‐term response of a resident, coastal delphinid species. With a projected global increase in frequency and intensity of extreme climatic events, resident marine top predators may not only have to contend with increasing coastal anthropogenic activities, but also have to adapt to large‐scale climatic changes.  相似文献   

20.
Coupling of several predator–prey oscillations can generate intriguing patterns of synchronization and chaos. Theory predicts that prey species will fluctuate in phase if predator–prey cycles are coupled through generalist predators, whereas they will fluctuate in anti-phase if predator–prey cycles are coupled through competition between prey species. Here, we investigate predator–prey oscillations in a long-term experiment with a marine plankton community. Wavelet analysis of the species fluctuations reveals two predator–prey cycles that fluctuate largely in anti-phase. The phase angles point at strong competition between the phytoplankton species, but relatively little prey overlap among the zooplankton species. This food web architecture is consistent with the size structure of the plankton community, and generates highly dynamic food webs. Continued alternations in species dominance enable coexistence of the prey species through a non-equilibrium 'killing-the-winner' mechanism, as the system shifts back and forth between the two predator–prey cycles in a chaotic fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号