首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haldane's rule predicts that particularly high fitness reduction should affect the heterogametic sex of interspecific hybrids. Despite the fact that hybridization is widespread in birds, survival of hybrid individuals is rarely addressed in studies of avian hybrid zones, possibly because of methodological constraints. Here, having applied capture–mark–recapture models to an extensive, 19‐year‐long data set on individually marked birds, we estimate annual survival rates of hybrid individuals in the hybrid zone between herring (Larus argentatus) and Caspian (Larus cachinnans) gulls. In both parental species, males have a slightly higher survival rate than females (model‐weighted mean ± SE: herring gull males 0.88 ± 0.01, females 0.87 ± 0.01, Caspian gull males 0.88 ± 0.01, females 0.87 ± 0.01). Hybrid males do not survive for a shorter time than nonhybrid ones (0.88 ± 0.01), whereas hybrid females have the lowest survival rate among all groups of individuals (0.83 ± 0.03). This translates to a shorter adult (reproductive) lifespan (on average by 1.7–1.8 years, i.e. ca 25%) compared with nonhybrid females. We conclude that, in line with Haldane's rule, the lower survival rate of female hybrids may contribute to selection against hybrids in this hybrid zone.  相似文献   

2.
3.
Examination of the genetic architecture of hybrid breakdown can provide insight into the genetic mechanisms of commonly observed isolating phenomena such as Haldane's rule. We used line‐cross analysis to dissect the genetic architecture of divergence between two plant species that exhibit Haldane's rule for male sterility and rarity, Silene latifolia and Silene diclinis. We made 15 types of crosses, including reciprocal F1, F2, backcrosses, and later‐generation crosses, grew the seeds to flowering, and measured the number of viable ovules, proportion of viable pollen, and sex ratio. Typically, Haldane's rule for male rarity in XY animal hybrids is explained by interactions involving recessive X‐linked alleles that are deleterious when hemizygous (dominance theory), whereas sterility is explained by rapid evolution of spermatogenesis genes (faster‐male evolution). In contrast, we found that the genetic mechanisms underlying Haldane's rule between the two Silene species did not follow these conventions. Dominance theory was sufficient to explain male sterility, but male rarity likely involved faster‐male evolution. We also found an effect of the neo‐sex chromosomes of S. diclinis on the extreme rarity of some hybrid males. Our findings suggest that the genetic architecture of Haldane's rule in dioecious plants may differ from those commonly found in animals.  相似文献   

4.
Rensch's rule proposes a universal allometric scaling phenomenon across species where sexual size dimorphism (SSD) has evolved: in taxa with male‐biased dimorphism, degree of SSD should increase with overall body size, and in taxa with female‐biased dimorphism, degree of SSD should decrease with increasing average body size. Rensch's rule appears to hold widely across taxa where SSD is male‐biased, but not consistently when SSD is female‐biased. Furthermore, studies addressing this question within species are rare, so it remains unclear whether this rule applies at the intraspecific level. We assess body size and SSD within Tribolium castaneum (Herbst), a species where females are larger than males, using 21 populations derived from separate locations across the world, and maintained in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are highly susceptible to variations in temperature, diet quality and other environmental factors. Crucially, here we nullify interference of such confounds as all populations were maintained under identical conditions (similar densities, standard diet and exposed to identical temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for all populations, and found body size variation across populations, and (as expected) female‐biased SSD in all populations. We test whether Rensch's rule holds for our populations, but find isometry, i.e. no allometry for SSD. Our results thus show that Rensch's rule does not hold across populations within this species. Our intraspecific test matches previous interspecific studies showing that Rensch's rule fails in species with female‐biased SSD.  相似文献   

5.
Anartia fatima and A. amathea form a hybrid zone in Panama where F1 and back-cross hybrids are found. Crosses were carried out to determine the nature of any reproductive isolation between these two butterflies. A novel analysis demonstrated both strong assortative mating among the pure forms and an unusual example of Haldane''s rule: F1 hybrid females (the heterogametic sex) from the cross A. amathea (female) multiplied by A. fatima (male) have a reduced tendency to mate. Historically, Haldane''s rule has been restricted to hybrid mortality or sterility and most studies have concentrated on taxa (predominantly Drosophila) between which strong barriers to gene flow already exist. Our data suggest that Haldane''s rule might be extended to cover any decrease in hybrid fitness and that mating propensity may provide a sensitive and comparable means of assessing such decreases. Other barriers to gene flow were also evident in Anartia: F1 hybrid females have reduced fertility (also a Haldane effect) and larval survivorship was greatly reduced in F2 hybrids of both sexes. These examples of hybrid disruption are expected under the dominance theory of Haldane''s rule but do not exclude other explanations.  相似文献   

6.
Hybridization between incipient species is more likely to produce sterile or inviable F1 offspring in the heterogametic (XY or ZW) sex than in the homogametic (XX or ZZ) sex, a phenomenon known as Haldane's rule. Population dynamics associated with Haldane's rule may play an important role in early speciation of sexually reproducing organisms. The dynamics of the hybrid zone maintained by incomplete hybrid inferiority (sterility/inviability) in the heterogametic sex (a ‘weak’ Haldane's rule) caused by a Bateson–Dobzhansky–Muller incompatibility was modelled. The influences and interplays of the strengths of incompatibility, dispersal, density‐dependent regulation (DDR) and local adaptation of incompatible alleles in a scenario of short‐range dispersal (the stepping‐stone model) were examined. It was found that a partial heterogametic hybrid incompatibility could efficiently impede gene flow and maintain characteristic clinal noncoincidence and discordance of alleles. Density‐dependent regulation appears to be an important factor affecting hybrid zone dynamics: it can effectively skew the effects of the partial incompatibility and dispersal as measured by effective dispersal, clinal structures and density depression. Unexpectedly, local adaptation of incompatible alleles in the parental populations, which would be critical for the establishment of the incompatibility, exerts little effect on hybrid zone dynamics. These results strongly support the plausibility of the adaptive origin of hybrid incompatibility and ecological speciation: an adaptive mutation, if it confers a marginal fitness advantage in the local population and happens to cause epistatic inferiority in hybrids, could efficiently drive further genetic divergence that may result in the gene becoming an evolutionary hotspot.  相似文献   

7.
Abstract In animals, if one sex of the F1 hybrid between two species is sterile or inviable, it is usually the heterogametic (XY or WZ) sex. This phenomenon, known as Haldane's rule, is currently thought to be coincidentally caused by different mechanisms in separate entities. The following questions have never been asked: Are heterogametic and homogametic inferiority (sterility or inviability) equivalent as isolating mechanisms? Could discrepancies between them, if existing, produce Haldane's rule? Here I consider sex‐biased hybrid inferiority strictly as an isolating mechanism, and quantitatively evaluate its strength in impeding gene flow. The comparison reveals that the ability of sex‐biased inferiority to impede gene flow varies according to the sex and chromosome involved. Heterogametic inferiority is a weaker barrier when unidirectional and a much stronger one when in compound reciprocal directions, compared with homogametic inferiority. Such differential strength may affect divergence in speciation and produce Haldane's rule.  相似文献   

8.
Subspecies of Drosophila pseudoobscura, one occurring in the United States and the other in Bogota, Columbia, exhibit Haldane's Rule in one direction of the cross. Additionally, D. pseudoobscura produces two sperm types: short, sterile sperm and long, fertile, sperm. Here I examine the relationship between the production of short and long sperm and hybrid sterility. Fertile and sterile hybrid males produce a greater proportion of short sperm compared to parental males with sterile hybrids producing mainly short, immotile sperm. Sperm transfer and storage patterns were similar between fertile hybrid and parental strains; and unexpectedly, short, immotile sperm from sterile hybrids were stored. These findings raise the question of whether different genetic mechanisms disrupt both sperm heteromorphic production and sperm motility and whether this indicates that females exert some control over sperm storage.  相似文献   

9.
Most sex ratios reported for Silene latifolia are female biased. As a result of experiments performed by Correns in the early 1900s, pollen tube competition has generally been accepted as the primary cause of these skewed ratios. We did four sets of hand pollinations in which we varied the size of pollen loads and placement of pollen along the filamentous stigma. The effect of pollen load size on progeny sex ratios was not statistically significant. Of 32 maternal families, 17 contained more females than males (one ratio deviated statistically from 1:1), and 13 contained more males than females. Paternal families exhibited a greater range of sex ratios, including three with a significant female bias and one with a significant male bias. Within experiments, neither the maternal parent nor where pollen was placed had a statistically significant effect on progeny sex ratios; the paternal effect was significant in one experiment. We suggest that sex ratios in Silene latifolia are not necessarily affected by the level of pollen competition. Other factors, including variation among males and sex-linked mortality, may help explain the skewed sex ratios that characterize populations of this species. Further, Correns' observations of excess females may have resulted from his use of interspecific hybrids.  相似文献   

10.
Understanding the general features of speciation is an important goal in evolutionary biology, and despite significant progress, several unresolved questions remain. We analyzed an extensive comparative dataset consisting of more than 1900 crosses between 92 species of toads to infer patterns of reproductive isolation. This unique dataset provides an opportunity to examine the strength of reproductive isolation, the development and sex ratios of hybrid offspring, patterns of fertility and infertility, and polyploidization in hybrids all in the context of genetic divergence between parental species. We found that the strength of intrinsic postzygotic isolation increases with genetic divergence, but relatively high levels of divergence are necessary before reproductive isolation is complete in toads. Fertilization rates were not correlated to genetic divergence, but hatching success, the number of larvae produced, and the percentage of tadpoles reaching metamorphosis were all inversely related with genetic divergence. Hybrids between species with lower levels of divergence developed to metamorphosis, while hybrids with higher levels of divergence stopped developing in gastrula and larval stages. Sex ratios of hybrid offspring were biased towards males in 70% of crosses and biased towards females in 30% of crosses. Hybrid females from crosses between closely related species were completely fertile, while approximately half (53%) of hybrid males were sterile, with sterility predicted by genetic divergence. The degree of abnormal ploidy in hybrids was positively related to genetic divergence between parental species, but surprisingly, polyploidization had no effect on patterns of asymmetrical inviability. We discuss explanations for these patterns, including the role of Haldane''s rule in toads and anurans in general, and suggest mechanisms generating patterns of reproductive isolation in anurans.  相似文献   

11.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

12.
Haldane's rule is an empirical phenomenon that has been observed in animals with sex chromosomes. The rule states that the heterogametic sex (XY or ZW) will be “absent, rare, or sterile” following hybridization between two species. Despite the near ubiquity of Haldane's rule in animal hybridizations, it has not been documented in organisms other than animals. Here, we show evidence for both rarity and sterility in hybrid male but not female offspring in crosses between three dioecious plant species from the genus Silene with heteromorphic (XY) sex chromosomes. Our results are consistent with Haldane's rule, extending its applicability to plants with sex chromosomes.  相似文献   

13.
Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito‐nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic‐by‐extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito‐nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X‐bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.  相似文献   

14.
Polymorphisms can lead to genetic isolation if there is differential mating success among conspecifics divergent for a trait. Polymorphism for sex‐determining system may fall into this category, given strong selection for the production of viable males and females and the low success of heterogametic hybrids when sex chromosomes differ (Haldane''s rule). Here we investigated whether populations exhibiting polymorphism for sex determination are genetically isolated, using the viviparous snow skink Carinascincus ocellatus. While a comparatively high elevation population has genotypic sex determination, in a lower elevation population there is an additional temperature component to sex determination. Based on 11,107 SNP markers, these populations appear genetically isolated. “Isolation with Migration” analysis also suggests these populations diverged in the absence of gene flow, across a period encompassing multiple Pleistocene glaciations and likely greater geographic proximity of populations. However, further experiments are required to establish whether genetic isolation may be a cause or consequence of differences in sex determination. Given the influence of temperature on sex in one lineage, we also discuss the implications for the persistence of this polymorphism under climate change.  相似文献   

15.
Two subspecies of the grasshopper Chorthippus parallelus meet in the Pyrenees forming a hybrid zone several kilometers wide. Crosses between the two pure taxa result in sterile male offspring and normal females (i.e., Haldane's rule applies). However, no such dysfunction has been detected in hybrid males collected through the center of the hybrid zone. By assessing the level of dysfunction in the offspring of reciprocal crosses, it was possible to map clines for the genes responsible for dysfunction through the zone. This analysis shows that there is no abrupt transition between incompatible genomes in the field. Crosses were also made between females collected from a transect spanning the hybrid zone and pure males of both subspecies. This reveals noncoincident clines for dysfunction near the center of the hybrid zone such that the dysfunction expressed in the offspring of these crosses is less than expected from simple models. More complex models involving interaction among genes must be invoked. Also, the possibility exists that since the postglacial contact of these two grasshopper taxa, hybrid dysfunction has become ameliorated by the evolution of modifiers. This hybrid zone is thought to be a tension zone, maintained by a balance between selection against hybrid genotypes and dispersal into the zone center. The lessening of hybrid disadvantage over time through the breakdown of epistatic interactions by recombination or through modification could account for the general lack of dysfunction in field collected hybrids today.  相似文献   

16.
M. J. Wade  N. A. Johnson    G. Wardle 《Genetics》1994,138(3):791-799
Haldane's rule states that, in interspecific crosses, when hybrid viability or fertility is diminished more in one sex of the hybrids than in the other, the heterogametic sex is more adversely affected. We used quantitative genetic methods to investigate the genetic basis of variation for the expression of the viability aspect of Haldane's rule when Tribolium castaneum males are crossed to Tribolium freemani females. Using a half-sib design, we found significant genetic variance for the expression of Haldane's rule, i.e, variation among T. castaneum sires in the hybrid sex ratios produced by their sons. We also derived 23 independent lineages from the same base population by 8 generations of brother-sister mating. From the same experiments, we also found heritable variation among surviving hybrid males in the incidence of antennal deformities. Upon inbreeding, the variance of both traits (hybrid sex ratio and proportion deformities) increased substantially but the means changed little. Because fitness within T. castaneum lineages declined substantially with inbreeding, we infer that hybrid male viability may have a different genetic basis than viability fitness within species. Deleterious recessive alleles held within species by mutation/selection balance appear not to be a major contributor to hybrid incompatibility.  相似文献   

17.
The study of the morphological defects unique to interspecific hybrids can reveal which developmental pathways have diverged between species. Drosophila melanogaster and D. santomea diverged more than 10 million years ago, and when crossed produce sterile adult females. Adult hybrid males are absent from all interspecific crosses. We aimed to determine the fate of these hybrid males. To do so, we tracked the development of hybrid females and males using classic genetic markers and techniques. We found that hybrid males die predominantly as embryos with severe segment‐specification defects while a large proportion of hybrid females embryos hatch and survive to adulthood. In particular, we show that most male embryos show a characteristic abdominal ablation phenotype, not observed in either parental species. This suggests that sex‐specific embryonic developmental defects eliminate hybrid males in this interspecific cross. The study of the developmental abnormalities that occur in hybrids can lead to the understanding of cryptic molecular divergence between species sharing a conserved body plan.  相似文献   

18.
When hybrid inviability is an indirect by‐product of local adaptation, we expect its degree of severity between pairs of populations to vary and to be sensitive to the environment. While complete reciprocal hybrid inviability is the outcome of the gradual process of local adaptation, it is not representative of the process of accumulation of incompatibility. In the flour beetle, Tribolium castaneum, some pairs of populations exhibit complete, reciprocal F1 hybrid incompatibility while other pairs are fully or partially compatible. We characterize this naturally occurring variation in the degree and timing of expression of the hybrid incompatible phenotype to better understand the number of genes or developmental processes contributing to speciation. We assessed the morphological and developmental variation in four Tribolium castaneum populations and their 12 possible F1 hybrids at each life‐history stage from egg to adult. We find that the rate of hybrid larval development is affected in all interpopulation crosses, including those eventually producing viable, fertile adults. Hybrid incompatibility manifests early in development as changes in the duration of instars and diminished success in the transition between instars are relative to the parent populations. Parent populations with similar developmental profiles may produce hybrids with disrupted development. The degree and timing of expression of hybrid inviability depends upon populations crossed, direction of the cross, and environment in which hybrids are raised. Our findings suggest that the coordinated expression of genes involved in transitional periods of development is the underlying cause of hybrid incompatibility in this species.  相似文献   

19.
Maladaptive hybridization is hypothesized to be an important force driving the evolution of reproductive isolation between closely related species. Because the magnitude and direction of selection can vary across a life cycle, an accurate understanding of the ubiquity of reinforcement requires fitness to be estimated across the life cycle, but the literature is surprisingly depauperate of such studies. We present fitness estimates of laboratory‐raised hybrids between the chorus frogs Pseudacris feriarum and Pseudacris nigrita—two species that have undergone reproductive character displacement where they come into secondary contact. By studying viability, mating success, and fertility across the life cycle, we find strong support for reinforcement as the force driving displacement in this system. Specifically, we find hybrid fitness is reduced by 44%. This reduction results from both sexual selection against hybrid males and natural selection on male fertility, but not viability selection. Sexual selection against hybrid males is four times stronger than natural selection. Hybrid female fitness is not reduced, however, suggesting that Haldane's rule may be operating in this system if males are heterogametic. We also found higher variation in hybrid male fertilization success relative to P. feriarum males, suggesting that the hybrid incompatibility genes are polymorphic within one or both of the parent species.  相似文献   

20.
Haldane's rule is one of the ‘two rules of speciation’. It states that if one sex is ‘absent, rare or sterile’ in a hybrid population, then that sex will be heterogametic. Since Haldane first made this observation, 100 years have passed and still questions arise over how many independent examples exist and what the underlying causes of Haldane's rule are. This review aims to examine research that has occurred over the last century. It seeks to do so by discussing possible causes of Haldane's rule, as well as gaps in the research of these causes that could be readily addressed today. After 100 years of research, it can be concluded that Haldane's rule is a complicated one, and much current knowledge has been accrued by studying the model organisms of speciation. This has led to the primacy of dominance theory and faster-male theory as explanations for Haldane's rule. However, some of the most interesting findings of the 21st century with regard to Haldane's rule have involved investigating a wider range of taxa emphasizing the need to continue using comparative methods, including ever more taxa as new cases are discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号