首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to estimate the genetic and phenotypic correlation between fluctuating asymmetry and two measurements of fear and stress in chickens which had not deliberately stressed in any way, using the restricted maximum likelihood procedure. A total of 1073 36-week-old birds from two generations with complete pedigree of the Quail Castellana breed was used. Fluctuating asymmetry of several traits (leg, wing, and feather lengths, and ear-lobe and wattle areas), tonic immobility duration (indicator of fear), and heterophil to lymphocyte ratio (indicator of stress) were measured. The estimated genetic relationship between relative fluctuating asymmetry for the different traits and tonic immobility tended to be positive, that between the combined relative asymmetry of all traits and tonic immobility being near to +1; no significant phenotypic relationship was found between relative fluctuating asymmetry and tonic immobility. The genetic relationship between relative fluctuating asymmetry and heterophil to lymphocyte ratio was not consistent across the traits, ranging from +1 to −1, although the genetic correlation between the combined relative asymmetry and the heterophil to lymphocyte ratio was near to +1 too; no significant phenotypic relationship was found between relative fluctuating asymmetry and heterophil to lymphocyte ratio either. Relative fluctuating asymmetry and body weight were genetically negatively correlated for leg length and ear-lobe area but positively for feather length; the genetic correlation between the combined relative asymmetry and the body weight being near to −1; phenotypic relationships were not significantly different from zero. A significant negative genetic correlation between tonic immobility and heterophil to lymphocyte ratio was found, although the phenotypic association between these two measurements was zero. Phenotypic correlations always near to zero suggest that fluctuating asymmetry was not associated with duration of tonic immobility and heterophil to lymphocyte ratio in birds that have not been deliberately stressed.  相似文献   

2.
Characters in animals used in signalling and subjected to strong directional selection often demonstrate (i) an elevated level of fluctuating asymmetry (small random deviations from bilateral symmetry) and (ii) a negative relationship between the degree of individual fluctuating asymmetry and the size of a given character. We tested these two predictions in plants since flowers are subjected to strong directional selection and are involved in signalling to pollinators, whereas leaves are supposed not to be directly involved in signalling. The overall level of fluctuating asymmetry in a number of plant species with bilaterally or radially symmetric flowers was not generally higher in floral traits than in leaves. The level of fluctuating asymmetry in plants was sometimes significantly consistent within individuals. The absolute degree of individual fluctuating asymmetry in floral traits was generally negatively related to the size of the trait, while there was a positive relationship for leaves. The degree of individual fluctuating asymmetry in floral traits was marginally negatively related to the degree of individual fluctuating asymmetry in leaf traits. These patterns of fluctuating asymmetry in plants suggest that (i) the degree of asymmetry in flowers signals different aspects of quality than does the degree of asymmetry in leaves, and that (ii) fluctuating asymmetry in flowers often reflects the phenotypic quality of individual plants.  相似文献   

3.
Inconsistencies in the relationship between fluctuating asymmetry (FA) and fitness may be due to selection acting on the degree of trait asymmetry that differs among populations or among traits. We assessed relationships between parasite susceptibility and fluctuating asymmetry in the number of bony lateral plates among 83 populations of freshwater Gasterosteus aculeatus (three spined stickleback) and among lateral plate positions that vary in the selection they experience for symmetry. The correlation between FA and parasite infection was highly variable among samples. Excess of infected asymmetric G. aculeatus increased significantly as the robustness of structural predator defences decreased. This effect was found for one parasite species only (Eustrongylides sp.) and was slightly stronger in females. In addition, there was a trend for there to be an excess of infected females asymmetric in those lateral plates positions that did not experience selection for their symmetry, although the trend only approached significance. These results suggest that selection for trait symmetry can obscure relationships between fitness and individual-wide developmental stability, providing one possible explanation for some of the heterogeneity in FA/fitness relationships seen in the literature. These results are also consistent with previous reports showing that ecological segregation between symmetric and asymmetric G. aculeatus and between sexes can alter the FA/fitness relationship.  相似文献   

4.
Extravagant secondary sexual characters are assumed to have arisen and be maintained by sexual selection. While traits like horns, antlers and spurs can be ascribed to intrasexual competition, other traits such as extravagant feather ornaments, displays and pheromones have to be ascribed to mate choice. A number of studies have tested whether females exert selection on the size of male ornaments, but only some of these have recorded female preferences for the most extravagantly ornamented males. Here I demonstrate that female choice can be directly predicted from the relationship between the degree of fluctuating asymmetry and the size of a secondary sexual character. Fluctuating asymmetry is an epigenetic measure of the ability of individuals to cope with stress, and it occurs when an individual is unable to undergo identical development of an otherwise bilaterally symmetric trait on both sides of its body. There is a negative relationship between the degree of fluctuating asymmetry and the absolute size of an ornament in those bird species with a female preference for the largest male sex trait, while there is a flat or U-shaped relationship among species without a female preference. These results suggest that females prefer exaggerated secondary sexual characters if they reliably demonstrate the ability of males to cope with genetic and environmental stress. Some species may demonstrate a flat or U-shaped relationship between the degree of fluctuating asymmetry and the absolute size of an ornament because (i) the genetic variance in viability signalled by the secondary sex trait has been depleted; (ii) the secondary sex trait is not particularly costly and therefore does not demonstrate condition dependence; or because (iii) the sex traits can be considered arbitrary traits rather than characters reflecting good genes.  相似文献   

5.
Fluctuating asymmetry of morphological traits is thought to reflect the capacity of a genotype to produce an integrated, functional phenotype. I tested three predictions. (1) In a polygynous breeding system, under intense sexual selection on males, breeding males should show greater symmetry in bilaterally symmetrical traits than non-breeding males or females. (2) If these traits are under stabilizing selection, highly symmetrical individuals also should be modal phenotypes, thus near the mean value for that trait, whereas individuals with increased asymmetry should represent marginal phenotypes, near the extremes of the distribution for that trait. (3) Differences in the intensity of sexual selection should be reflected in differences in the degree of fluctuating asymmetry between sexes among populations. I examined the relationship between male breeding status and the degree of fluctuating asymmetry of four bilaterally symmetrical- traits, preorbital and preopercular pores and pectoral and pelvic fin rays, in two populations of Pecos pupfish which differed in the intensity of sexual selection. These traits do not function in male-male competition or female choice, thus are not directly affected by sexual selection. In Mirror Lake breeding males, as a group, were most symmetrical for all four traits, while non-breeding males and females showed higher levels of fluctuating asymmetry. Similarly, symmetrical individuals also represented modal phenotypes for four traits (breeding males), and for three traits (non-breeding males and females). These patterns were not seen in the Lake Francis population, where breeding males were as asymmetrical as non-breeding males and females, and the degree of fluctuating symmetry did not differ between modal and marginal phenotypes for any of the four traits. When ecological conditions favour intense sexual selection, either through female choice, male-male competition, or both, breeding males represent the most fit phenotypes. Thus sexual selection reinforces the effects of stabilizing selection on characters that do not function as secondary sexual traits. However, when sexual selection is relaxed, differences between sexes disappear.  相似文献   

6.
A number of studies have reported a significant negative association between fluctuating asymmetry (FA) of bilateral morphological traits and individual fitness traits, but almost all of these are unreplicated and based on small sample sizes using single trait estimates of FA. We therefore tested if there was a relationship between the FA of five bilateral traits and fecundity and development time in Drosophila in a multiple replicated experimental design. Stressed treatments were included to increase the variability of traits and to test whether associations among traits were affected by changes in the environment. Significant positive relationships were found between the size of wing characters and mean fecundity for the 5‐day period and this relationship tended to be stronger in the stress treatments. No association was found between FA and mean fecundity for any of the traits measured. Similarly, a significant positive relationship was detected between wing trait size and development time but no association was detected between trait FA and development time. There were no differences between mean fecundity or development time of extreme asymmetry phenotypes compared with modal phenotypes. These results are discussed with reference to suggestions in the literature that FA can be used to estimate individual fitness.  相似文献   

7.
Fluctuating asymmetry and sexual selection   总被引:7,自引:0,他引:7  
Fluctuating asymmetry occurs when an individual is unable to undergo identical development on both sides of a bilaterally symmetrical trait. Fluctuating asymmetry measures the sensitivity of development to a wide array of genetic and environmental stresses. We propose that fluctuating asymmetry is used in many signalling contexts for assessment of an individual's ability to cope with its environment. We hypothesize that fluctuating asymmetry is used in sexual selection, both in fighting and mate choice, and in competition for access to resources. Evidence is reviewed showing that the patterns of fluctuating asymmetry in secondary sexual characters differ from those seen in other morphological traits. Secondary sexual characters show much higher levels of fluctuating asymmetry. Also, there is often a negative relationship between fluctuating asymmetry and the absolute size of ornaments, whereas the relationship is typically U-shaped in other morphological traits. The common negative relationship between fluctuating asymmetry and ornament size suggests that many ornaments reliably reflect individual quality.  相似文献   

8.
Secondary sexual characters have been hypothesized to demonstrate increased phenotypic variation between and within individuals as compared to ordinary morphological traits. We tested whether this was the case by studying phenotypic variation, expressed as the coefficient of variation (CV), and developmental instability, measured as fluctuating asymmetry (FA), in ornamental and non-ornamental traits of 70 bird species with feather ornamentation while controlling for similarity among species due to common descent. Secondary sexual characters differed from ordinary morphological traits by showing large phenotypic CV and FA. This difference can be explained by the different mode of selection operating on each kind of trait: a history of intense directional (ornaments) and stabilizing selection (non-ornaments). Phenotypic variation is reduced in the sex with more intense sexual selection (males), but does not differ among species with different mating systems. The strength of stabilizing selection arising from natural selection is associated with decreased CV (wing CV is smaller than tarsus or tail CVs). We found evidence of FA being reduced in ornamental feathers strongly affected by aerodynamics (tail feathers) compared to other ornaments, but only in females. In conclusion, CV and FA were not related, suggesting mat phenotypic plasticity and developmental instability are independent components of phenotypic variation.  相似文献   

9.
Fluctuating asymmetry, the random deviation from perfect bilateral symmetry, has recently attracted considerable attention. Levels of asymmetry have been shown to correlate with measures of individual quality. We measured asymmetry in a variety of ornamental and non-ornamental traits in red junglefowl, Gallus gallus and examined the patterns of asymmetry among different traits within an individual. All ornamental traits had significantly higher levels of fluctuating asymmetry than did non-ornamental traits. However, inter-trait correlations of asymmetry were low for both ornamental and non-ornamental traits. We then correlated measures of asymmetry with several potential indicators of male quality, including comb size, body size, and body condition. We found little evidence that asymmetry in any measured trait reflected male quality. We measured asymmetry in ornamental traits at several stages of development and found no relationship between male condition and changes in asymmetry over time. Our results indicate that it is necessary to employ caution when choosing traits to be measured in studies of fluctuating asymmetry and that a relationship between asymmetry and individual quality cannot be assumed.  相似文献   

10.
How variation and variability (the capacity to vary) may respond to selection remain open questions. Indeed, effects of different selection regimes on variational properties, such as canalization and developmental stability are under debate. We analyzed the patterns of among‐ and within‐individual variation in two wing‐shape characters in populations of Drosophila melanogaster maintained under fluctuating, disruptive, and stabilizing selection for more than 20 generations. Patterns of variation in wing size, which was not a direct target of selection, were also analyzed. Disruptive selection dramatically increased phenotypic variation in the two shape characters, but left phenotypic variation in wing size unaltered. Fluctuating and stabilizing selection consistently decreased phenotypic variation in all traits. In contrast, within‐individual variation, measured by the level of fluctuating asymmetry, increased for all traits under all selection regimes. These results suggest that canalization and developmental stability are evolvable and presumably controlled by different underlying genetic mechanisms, but the evolutionary responses are not consistent with an adaptive response to selection on variation. Selection also affected patterns of directional asymmetry, although inconsistently across traits and treatments.  相似文献   

11.
We tested whether directional selection on an index-based wing character in Drosophila melanogaster affected developmental stability and patterns of directional asymmetry. We selected for both an increase (up selection) and a decrease (down selection) of the index value on the left wing and compared patterns of fluctuating and directional asymmetry in the selection index and other wing traits across selection lines. Changes in fluctuating asymmetry across selection lines were predominantly small, but we observed a tendency for fluctuating asymmetry to decrease in the up-selected lines in both replicates. Because changes in fluctuating asymmetry depended on the direction of selection, and were not related to changes in trait size, these results fail to support existing hypotheses linking directional selection and developmental stability. Selection also produced a pattern of directional asymmetry that was similar in all selected lines whatever the direction of selection. This result may be interpreted as a release of genetic variance in directional asymmetry under selection.  相似文献   

12.
A barn swallow Hirundo rustica partial cross‐fostering experiment with simultaneous brood size manipulation was conducted in two years with contrasting weather conditions, to estimate heritable variation in tarsus, tail and wing size and fluctuating asymmetry. Environmental stress had contrasting effects depending on trait type. Significant heritabilities for tarsus, tail and wing size were found only in enlarged broods irrespective of year effects, while tarsus asymmetry was significantly heritable in the year with benign weather conditions irrespective of brood size manipulation effects. Tail, wing and composite (multicharacter) asymmetry were never significantly heritable. The environment with the higher heritability generally had higher additive genetic variance and lower environmental variance, irrespective of trait type. Heritability was larger for trait size than for trait asymmetry. Patterns of genetic variation in nestlings do not necessarily translate to the juvenile or adult stage, as indicated by lack of correlation between nestling and fledgling traits.  相似文献   

13.
Bilateral symmetry and sexual selection: a meta-analysis   总被引:9,自引:0,他引:9  
A considerable body of primary research has accumulated over the last 10 yr testing the relationship between developmental instability in the form of fluctuating asymmetry and performance of individuals in mating success itself or sexual attractiveness. This research comprises 146 samples from 65 studies of 42 species of four major taxa. We present the results of a meta-analysis of these studies, which demonstrates that there is indeed an overall significant, moderate negative relationship: for studies, the overall mean Pearson's r or effect size = -.42, P <.0005; for species, the overall mean r = -.34, .01 < P < .025. Based on calculated fail-safe numbers, the effect-size estimates are highly robust against any publication or reporting bias that may exist. There is considerable evidence that the magnitude of the negative correlation between fluctuating asymmetry and success related to sexual selection is greater for males than for females, when a secondary sexual trait rather than an ordinary trait is studied, with experimentation compared with observation, and for traits not involved with mobility compared with traits affecting mobility. There is also limited evidence that higher taxa may differ in effect size and that intensity of sexual selection negatively correlates with effect size.  相似文献   

14.
We estimated heritabilities, and genetic and phenotypic correlations between beak and body traits in the song sparrow ( Melospiza melodia ). We compared these estimates to values for the same traits in the Galápagos finches, Geospiza (Boag, 1983; Grant, 1983). Morphological variance is low in the song sparrow, and our results show that genetic and phenotypic correlations are considerably lower than correlations in the morphologically more variable Geospiza. Comparison using a larger sample of Galapagos populations confirms the existence of an association between variance and correlation for phenotypic values. We suggest two possible explanations for this association. First, most traits studied are functionally related, and the joint evolution of variance and correlation may have resulted from stabilizing selection about a line of optimal allometry between traits. Alternatively, introgression between populations and species could have caused correlation and variance to evolve jointly. Both selection and introgression were probably influential in producing the observed pattern, but it is not possible to estimate their relative importance with current data. Genetic and phenotypic correlations were correlated in the song sparrow, but heritabilities of traits varied greatly. As a result, the genetic variance-covariance matrix for traits is not simply a constant multiple of the phenotypic matrix. Evolutionary response to natural selection cannot, therefore, be predicted from the measurement of phenotypic characteristics alone.  相似文献   

15.
Plant traits that increase pollinator visitation should be under strong selection. However, few studies have demonstrated a causal link between natural variation in attractive traits and natural variation in visitation to whole plants. Here we examine the effects of flower number and size on visitation to wild radish by two taxa of pollinators over 3 years, using a combination of multiple regression and experimental reductions in both traits. We found strong, consistent evidence that increases in both flower number and size cause increased visitation by syrphid flies. The results for small bees were harder to interpret, because the multiple regression and experimental manipulation results did not agree. It is likely that increased flower size causes a weak increase in small-bee visitation, but strong relationships between flower number and small-bee visitation seen in 2 years of observational studies were not corroborated by experimental manipulation of this trait. Small bees may actually have responded to an unmeasured trait correlated with flower number, or lower small-bee abundances when the flower number manipulation was conducted may have reduced our ability to detect a causal relationship. We conclude that studies using only 1 year, one method, or measuring only one trait may not provide an adequate understanding of the effects of plant traits on pollinator attraction.  相似文献   

16.
Conditions experienced during early development may affect both adult phenotype and performance later during life. Phenotypic traits may hence be used to indicate past growing conditions and predict future survival probabilities. Relationships between phenotypic markers and future survival are, however, highly heterogeneous, possibly because poor‐ and high‐quality individuals cannot be morphologically discriminated when developing under good environmental conditions. Sub‐optimal breeding conditions, in contrast, may unmask poor‐quality individuals in a measurable way at the morphological level. We thus predict stronger associations between phenotype and performance under stress. In this field study, we test this hypothesis, experimentally challenging the homeostasis of great tit (Parus major) nestlings by short‐term deprivation of parental care, which had no immediate effect on nestling fitness. The experiment was replicated during two subsequent breeding seasons with contrasting ambient weather conditions. Experimental (short‐term) stress affected tarsus growth but not residual mass at fledging, whereas ambient (continuous) stress affected residual mass but not tarsus growth. Short‐term stress effects on tarsus length and tarsus fluctuating asymmetry were only apparent when ambient conditions were unfavourable. Residual mass and hatching date, but none of the other phenotypic traits, predicted local survival, whereby the strength of the relationship did not vary between both years. Because effects of stress on developmental homeostasis are likely to be trait‐specific and condition‐dependent, studies on the use of phenotypic markers for individual fitness should integrate multiple traits comprising different levels of developmental complexity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 103–110.  相似文献   

17.
Despite robust cross-cultural reliability of human facial attractiveness ratings, research on facial attractiveness has only superficially addressed the connection between facial attractiveness and the history of sexual selection in Homo sapiens. There are reasons to believe that developmental stability and phenotypic quality are related. Recent studies of nonhuman animals indicate that developmental stability, measured as fluctuating asymmetry in generally bilateral symmetrical traits, is predictive of performance in sexual selection: Relatively symmetrical males are advantaged under sexual selection. This pattern is suggested by our study of facial attractiveness and fluctuating asymmetry in seven bilateral body traits in a student population. Overall, facial attractiveness negatively correlated with fluctuating asymmetry; the relation for men, but not for women, was statistically reliable. Possible confounding factors were controlled for in the analysis.  相似文献   

18.
Performance capacity influences ecology, behavior and fitness, and is determined by the underlying phenotype. The phenotype-performance relationship can influence the evolutionary trajectory of an organism. Several types of phenotype-performance relationships have been described, including one-to-one relationships between a single phenotypic trait and performance measure, trade-offs and facilitations between a phenotypic trait and multiple performance measures, and redundancies between multiple phenotypic traits and a single performance measure. The F-matrix is an intraspecific matrix of measures of statistical association between phenotype and performance that is used to quantify these relationships. We extend the F-matrix in two ways. First, we use the F-matrix to describe how the different phenotype-performance relationships occur simultaneously and interact in functional systems, a phenomenon we call many-to-many mapping. Second, we develop methods to compare F-matrices among species and compare phenotype-performance relationships at microevolutionary and macroevolutionary levels. We demonstrate the expanded F-matrix approach with a dataset of eight phrynosomatine lizard species, including six phenotypic traits and two measures of locomotor performance. Our results suggest that all types of relationships occur in this system and that phenotypic traits involved in trade-offs are more functionally constrained and tend evolve slower interspecifically than those involved in facilitations or one-to-one relationships.  相似文献   

19.
In nature, selection varies across time in most environments, but we lack an understanding of how specific ecological changes drive this variation. Ecological factors can alter phenotypic selection coefficients through changes in trait distributions or individual mean fitness, even when the trait‐absolute fitness relationship remains constant. We apply and extend a regression‐based approach in a population of Soay sheep (Ovis aries) and suggest metrics of environment‐selection relationships that can be compared across studies. We then introduce a novel method that constructs an environmentally structured fitness function. This allows calculation of full (as in existing approaches) and partial (acting separately through the absolute fitness function slope, mean fitness, and phenotype distribution) sensitivities of selection to an ecological variable. Both approaches show positive overall effects of density on viability selection of lamb mass. However, the second approach demonstrates that this relationship is largely driven by effects of density on mean fitness, rather than on the trait‐fitness relationship slope. If such mechanisms of environmental dependence of selection are common, this could have important implications regarding the frequency of fluctuating selection, and how previous selection inferences relate to longer term evolutionary dynamics.  相似文献   

20.
Developmental instability (DI) is the sensitivity of a developing trait to random noise and can be measured by degrees of directionally random asymmetry [fluctuating asymmetry (FA)]. FA has been shown to increase with loss of genetic variation and inbreeding as measures of genetic stress, but associations vary among studies. Directional selection and evolutionary change of traits have been hypothesized to increase the average levels of FA of these traits and to increase the association strength between FA and population‐level genetic variation. We test these two hypotheses in three‐spined stickleback (Gasterosteus aculeatus L.) populations that recently colonized the freshwater habitat. Some traits, like lateral bone plates, length of the pelvic spine, frontal gill rakers and eye size, evolved in response to selection regimes during colonization. Other traits, like distal gill rakers and number of pelvic fin rays, did not show such phenotypic shifts. Contrary to a priori predictions, average FA did not systematically increase in traits that were under presumed directional selection, and the increases observed in a few traits were likely to be attributable to other factors. However, traits under directional selection did show a weak but significantly stronger negative association between FA and selectively neutral genetic variation at the population level compared with the traits that did not show an evolutionary change during colonization. These results support our second prediction, providing evidence that selection history can shape associations between DI and population‐level genetic variation at neutral markers, which potentially reflect genetic stress. We argue that this might explain at least some of the observed heterogeneities in the patterns of asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号