首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the role of natural selection in the evolution of floral traits has been of great interest to biologists since Darwin, studies of selection on floral traits through differences in lifetime fitness have been rare. We measured selection acting on flower number, flower size, stigma exsertion, and ovule number per flower using field data on lifetime female fitness (seed production) in wild radish, Raphanus raphanistrum. The patterns of selection were reasonably consistent across three field seasons, with strong directional selection for increased flower production in all three years, weaker selection for increased ovule number per flower in two years, and selection for increased flower size in one year. The causes of the selection were investigated using path analysis combined with multiplicative fitness components. Increased flower production increased fruit production directly, and increased numbers of ovules per flower increased the number of seeds per fruit in all three years; pollinator visitation did not influence either of these fitness components. Increased flower size was associated with increases in both the number of fruit and the number of seeds per fruit in one year, with the latter relationship being stronger. Total lifetime seed production was affected more strongly by differences in fruit production than by differences in either the number of seeds per fruit or the proportion of fertilized seeds that were viable, but all three fitness components were positively correlated with total seed production.  相似文献   

2.
3.
The use of regression techniques for estimating the direction and magnitude of selection from measurements on phenotypes has become widespread in field studies. A potential problem with these techniques is that environmental correlations between fitness and the traits examined may produce biased estimates of selection gradients. This report demonstrates that the phenotypic covariance between fitness and a trait, used as an estimate of the selection differential in estimating selection gradients, has two components: a component induced by selection itself and a component due to the effect of environmental factors on fitness. The second component is shown to be responsible for biases in estimates of selection gradients. The use of regressions involving genotypic and breeding values instead of phenotypic values can yield estimates of selection gradients that are not biased by environmental covariances. Statistical methods for estimating the coefficients of such regressions, and for testing for biases in regressions involving phenotypic values, are described.  相似文献   

4.
Regression analyses are central to characterization of the form and strength of natural selection in nature. Two common analyses that are currently used to characterize selection are (1) least squares–based approximation of the individual relative fitness surface for the purpose of obtaining quantitatively useful selection gradients, and (2) spline‐based estimation of (absolute) fitness functions to obtain flexible inference of the shape of functions by which fitness and phenotype are related. These two sets of methodologies are often implemented in parallel to provide complementary inferences of the form of natural selection. We unify these two analyses, providing a method whereby selection gradients can be obtained for a given observed distribution of phenotype and characterization of a function relating phenotype to fitness. The method allows quantitatively useful selection gradients to be obtained from analyses of selection that adequately model nonnormal distributions of fitness, and provides unification of the two previously separate regression‐based fitness analyses. We demonstrate the method by calculating directional and quadratic selection gradients associated with a smooth regression‐based generalized additive model of the relationship between neonatal survival and the phenotypic traits of gestation length and birth mass in humans.  相似文献   

5.
It has often been suggested that selection on floral traits in hermaphroditic plants should occur primarily through differences in male fitness. However, measurements of selection on floral traits through differences in lifetime male fitness have been lacking. We measured selection on a variety of wild radish floral traits using lifetime male fitness measures derived from genetic paternity analysis. These male fitness estimates were then combined with estimates of lifetime female fitness of the same plants to produce measurements of selection based on lifetime total fitness. Contrary to the prediction above, there was no strong evidence for selection on floral morphology through male fitness differences in any of the three years of the study, but there was strong selection for increased flower size through female fitness differences in one year. The main determinant of both male and female fitness in all years was flower number; this lead to moderately positive correlations between male and female fitness in all three years.  相似文献   

6.
A classical data set is used to predict the effect of selection on sexual dimorphism and on the population means of three characters—stature, span, and cubit—in humans. Given selection of equal intensity, the population means of stature and of cubit should respond more than 60 times as fast as dimorphism in these characters. The population mean of span should also respond far more rapidly than dimorphism, but no numerical estimate of the ratio of these rates was possible. These results imply that sexual dimorphism in these characters can evolve only very slowly. Consequently, hypotheses about the causes of sexual dimorphism cannot be tested by comparing the dimorphism of different human societies. It has been suggested that primate sexual dimorphism may be an allometric response to selection for larger body size. We show that such selection can indeed generate sexual dimorphism, but that this effect is too weak to account for the observed relationship between dimorphism and body size in primates.  相似文献   

7.
Monogamy is often presumed to constrain mating variance and restrict the action of sexual selection. We examined the reproductive patterns of a monogamous population of smallmouth bass (Micropterus dolomieui), and attempted to identify sources of within-season fitness variation among females and known-age males. Many males did not acquire a nest site, and many territorial males were unsuccessful in acquiring a mate. The likelihood that territorial males mated depended on several aspects of nest sites. Mated males of age three were larger than the average size of age-three males in the population. The mean sizes of age-four and age-five mated males were not different from the average of same-age males in the population. Thus, selection resulting from the acquisition of a mate favored large size among only age-three males. Timing of nest construction and breeding among territorial males was negatively related to male size and did not depend on male age after taking male size into account. Indirect evidence (numbers of eggs deposited in nests) suggests that the timing of spawning among females was also negatively related to female size. Fertility selection favored early reproduction within the season by males of all ages, but large male size was favored among only age-four males. The combined early breeding of fecund females and female mate choice of large males may explain the positive correlation between the size of age-four males and the number of eggs acquired. Despite large differences of female fecundity, however, the variance of relative mate number contributed about two times more than the variance of relative fertility among females to the total variance of relative fitness within each sex.  相似文献   

8.
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low‐ compared to high‐fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high‐ and low‐fitness individuals and was greater among the low‐fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits.  相似文献   

9.
Understanding the mechanics of adaptive evolution requires not only knowing the quantitative genetic bases of the traits of interest but also obtaining accurate measures of the strengths and modes of selection acting on these traits. Most recent empirical studies of multivariate selection have employed multiple linear regression to obtain estimates of the strength of selection. We reconsider the motivation for this approach, paying special attention to the effects of nonnormal traits and fitness measures. We apply an alternative statistical method, logistic regression, to estimate the strength of selection on multiple phenotypic traits. First, we argue that the logistic regression model is more suitable than linear regression for analyzing data from selection studies with dichotomous fitness outcomes. Subsequently, we show that estimates of selection obtained from the logistic regression analyses can be transformed easily to values that directly plug into equations describing adaptive microevolutionary change. Finally, we apply this methodology to two published datasets to demonstrate its utility. Because most statistical packages now provide options to conduct logistic regression analyses, we suggest that this approach should be widely adopted as an analytical tool for empirical studies of multivariate selection.  相似文献   

10.
Major theories of sexual selection predict heritable variation in female preferences and male traits and a positive genetic correlation between preference and trait. Here we show that female Texas field crickets, Gryllus integer, have heritable genetic variation for the male calling song stimulus level that produces the greatest phonotactic response. Approximately 34% of the variation in female preferences was due to additive genetic effects. Female choosiness, that is, the strength of the female response to her most preferred stimulus relative to her average response to all stimuli, did not show significant genetic effects. The male calling song character was not related to male size or age but did show significant genetic effects. Approximately 39% of the variation in the number of pulses per trill was due to additive genetic variation. The genetic correlation estimated for the field population was 0.51 ± 0.17. The number of pulses per trill produced by males is under stabilizing sexual selection.  相似文献   

11.
In the breeding system of Pacific salmon, females compete for oviposition territories, and males compete to fertilize eggs. The natural selection in females and sexual selection in males likely has been responsible for their elaborate breeding morphologies and the dimorphism between the sexes. We quantified direct-selection intensities during breeding on mature coho salmon (Oncorhynchus kisutch), measured for seven phenotypic characters, including three secondary sexual characters. Wild and sea-ranched hatchery coho were used to enhance the range of phenotypes over which selection could be examined. The fish were allowed to breed in experimental arenas where we could quantify components of breeding success as well as estimate overall breeding success. We found that without competition, natural selection acts only on female body size for increased egg production; there is no detectable selection on males for the phenotypic distribution we used. Under competition, the opportunity for selection increased sixfold among females. Natural selection favored female body size and caudal-peduncle (tail) depth. Increased body size meant increased egg production and access to nesting territories. The caudal peduncle, used in burst swimming and nest digging, influenced both successful egg deposition and nest survival. Increasing density increased competition among females, though it did not significantly intensify natural selection on their characters. In males, competition increased the opportunity for selection 52-fold, which was nine times greater than for females. Sexual selection favored male body size and hooked snout length, both characters directly influencing male access to spawning opportunities. Selection on male body size was also affected significantly by breeding density. The ability of large males to control access to spawning females decreased at higher densities reflecting an increase in the operational sex ratio. Further, the relative success of small males, which could sneak access to spawning females, appeared to increase as that of intermediate-sized males decreased. Such disruptive selection may be responsible for the evolution of alternative reproductive tactics in salmon.  相似文献   

12.
In every generation, the mean fitness of populations increases because of natural selection and decreases because of mutations and changes in the environment. The magnitudes of these effects can be measured in two ways: either directly, by comparing the fitnesses of selected and unselected populations, or indirectly, by measuring the additive variance of fitness and making use of the fundamental theorem of natural selection. The available data suggest that the amount by which natural selection increases mean fitness each generation (or degradation decreases mean fitness) will usually be between 0.1% and 30%; more tentatively, it is suggested that values will typically fall between 1% and 10%. These values can be used to set an upper limit of 5%–10% on the genetic advantage of mate choice.  相似文献   

13.
Canalization is an abstract term that describes unknown developmental mechanisms that reduce phenotypic variation. A trait can be canalized against environmental perturbations (e.g., changes in temperature or nutrient quality), or genetic perturbations (e.g., mutations or recombination); this paper is about genetic canalization. Stabilizing selection should improve the canalization of traits, and the degree of canalization should be positively correlated with the traits' impact on fitness. Experiments testing this idea should measure the canalization of a series of traits whose impact on fitness is known or can be inferred, exclude differences among traits in the number of loci and alleles segregating as an explanation for the pattern of variability found, and distinguish between canalization against genetic and environmental variation. These conditions were met by three experiments within which the variation of fitness components among Drosophila melanogaster lines was measured and among which the genetic contribution to the variation among lines was clearly different. The canalization of the traits increased with their impact on fitness and did not depend on the degree of genetic differences among lines. That the flies used had been transformed by a P-element insert suggests that canalization was also effective against novel genetic variation. The results reported here cannot be explained by the classical hypothesis of reduction in the number of loci segregating for traits with greater impact on fitness and confirm that traits with greater impact on fitness are more strongly canalized. This pattern of canalization reveals an underappreciated role for development in microevolution. There is differential genetic canalization of fitness components in D. melanogaster.  相似文献   

14.
This study investigated fertility selection on a flower petal pigmentation polymorphism in Clarkia gracilis ssp. sonomensis. Natural populations are typically composed of nearly 100% spotted-petal plants, although rare populations contain a majority of unspotted plants. I compared fitness values for the two morphs using a simple fertility model to estimate selection for experimental arrays of plants placed into existing populations of different phenotypic frequencies. Both male and female reproductive success were estimated as well as the pattern of mating among phenotypes. Although the separate fitness components varied from no differences to a strong advantage for spotted plants, for every situation the selection calculations predicted an increase in the frequency of the spotted allele. Pollinator behavior and postpollination mechanisms may be responsible for the fitness differences. The apparent inability of the unspotted allele to spread though most natural populations is consistent with its selective disadvantage in this study.  相似文献   

15.
In the seaweed fly, Coelopa frigida, a large chromosomal inversion system is affected by sexual selection and viability selection. However, our understanding of the interaction between these two selective forces is currently limited as research has focused upon a limited range of environments. We allowed C. frigida larvae to develop in two different algae, Fucus and Laminaria, and then measured viability and body size for each inversion genotype. Significant male‐specific genotype‐by‐environment interactions influenced viability and body size. For males developing in Laminaria, the direction of viability selection acts similarly on the inversion system as the direction of sexual selection. In contrast, for males developing in Fucus, viability selection opposes sexual selection. These results demonstrate that through considering viability selection in different environments, the costs and benefits associated with sexual selection can be found to vary.  相似文献   

16.
In this study we assessed whether sexual selection against hybrids contributes to reproductive isolation between two sympatric stickleback species. The species are recently diverged and possibly in the final stages of speciation. Our aim was to find whether mating discrimination of the parental species selects against F1 hybrids, and what conditions are necessary for such sexual selection to operate. We used conservative no-choice laboratory trials with reproductively naive, lab-reared fish to measure female mating preferences. Females exhibited ranked preferences, preferring in order: conspecific, hybrid, then heterospecific males. However, intermediate attractiveness does not necessarily imply selection against hybrids: two-way ANOVAs suggested that limnetic, benthic, and hybrid males were statistically equivalent when averaged across females. Thus, this experiment found no evidence for a hybrid mating disadvantage. Our interpretation is that if sexual selection against hybrids is present in the wild, then some factor that biases encounter rates between hybrids and parental species (e.g., habitat selection) is necessary to produce it.  相似文献   

17.
Sexual size dimorphism (SSD) is often attributed to sexual selection, particularly when males are the larger sex. However, sexual selection favoring large males is common even in taxa where females are the larger sex, and is therefore not a sufficient explanation of patterns of SSD. As part of a more extensive study of the evolution of SSD in water striders (Heteroptera, Gerridae), we examine patterns of sexual selection and SSD in 12 populations of Aquarius remigis. We calculate univariate and multivariate selection gradients from samples of mating and single males, for two sexually dimorphic traits (total length and profemoral width) and two sexually monomorphic traits (mesofemoral length and wing form). The multivariate analyses reveal strong selection favoring larger males, in spite of the female-biased SSD for this trait, and weaker selection favoring aptery and reduced mesofemoral length. Selection is weakest on the most dimorphic trait, profemoral width, and is stabilizing rather than directional. The pattern of sexual selection on morphological traits is therefore not concordant with the pattern of SSD. The univariate selection gradients reveal little net selection (direct + indirect) on any of the traits, and suggest that evolution away from the plesiomorphic pattern of SSD is constrained by antagonistic patterns of selection acting on this suite of positively correlated morphological traits. We hypothesize that SSD in A. remigis is not in equilibrium, a hypothesis that is consistent with both theoretical models of the evolution of SSD and our previous studies of allometry for SSD. A negative interpopulation correlation between the intensity of sexual selection and the operational sex ratio supports the hypothesis that, as in several other water strider species, sexual selection in A. remigis occurs through generalized female reluctance rather than active female choice. The implications of this for patterns of sexual selection are discussed.  相似文献   

18.
Abstract.— The ornamentation and displays on which sexual attractiveness and thus mating success are based may be complex and comprise several traits. Predicting the outcome of sexual selection on such complex phenotypes requires an understanding of both the direct operation of selection on each trait and the indirect consequences of selection operating directly on genetically correlated traits. Here we report the results of a quantitative genetic analysis of the ornamentation, sexual attractiveness, and mating success of male guppies (Poecilia reticulata). We analyze male ornamentation both from the point of view of single ornamental traits (e.g., the area of each color) and of composite measures of the way the entire pattern is likely to be perceived by females (e.g., the mean and contrast in chroma). We demonstrate that there is substantial additive genetic variation in almost all measures of male ornamentation and that much of this variation may be Y linked. Attractiveness and mating success are positively correlated at the phenotypic and genetic level. Orange area and chroma, the area of a male's tail, and the color contrast of his pattern overall are positively correlated with attractiveness and/or mating success at the phenotypic and genetic levels. Using attractiveness and mating success as measures of fitness, we estimate gradients of linear directional sexual selection operating on each male trait and use equations of multivariate evolutionary change to predict the response of male ornamentation to this sexual selection. From these analyses, we predict that indirect selection may have important effects on the evolution of male guppy color patterns.  相似文献   

19.
Stabilizing selection, which favors intermediate phenotypes, is frequently invoked as the selective force maintaining a population's status quo. Two main alternative reasons for stabilizing selection on a quantitative trait are possible: (1) intermediate trait values can be favored through the causal effect of the trait on fitness (direct stabilizing selection); or (2) through a pleiotropic, deleterious side effect on fitness of mutants affecting the trait (apparent stabilizing selection). Up to now, these alternatives have never been experimentally disentangled. Here we measure fitness as a function of the number of abdominal bristles within four Drosophila melanogaster lines, one with high, one with low, and two with intermediate average bristle number. The four were inbred nonsegregating lines, so that apparent selection due to pleiotropy is not possible. Individual fitness significantly increased (decreased) with bristles number in the low (high) line. No significant fitness-trait association was detected within each intermediate line. These results reveal substantial direct stabilizing selection on the trait.  相似文献   

20.
The possible roles of random genetic change and natural selection in bryozoan speciation were analyzed using quantitative genetic methods on breeding data for traits of skeletal morphology in two closely related species of the cheilostome Stylopoma. The hypothesis that morphologic differences between the species are caused entirely by mutation and genetic drift could not be rejected for reasonable rates of mutation maintained for as few as 103 to 104 generations. Divergence times this short or shorter are consistent with the abrupt appearances of many invertebrate species in the fossil record, commonly followed by millions of years of morphologic stasis. To produce these differences over 103 generations or fewer, directional selection acting alone would require unrealistically high levels of minimum selective mortality throughout divergence. Thus, selection is unnecessary to explain the divergence of these species, except as a means of accelerating the effects of random genetic change on shorter time scales (directional selection), or decelerating them over longer ones (stabilizing selection). These results are consistent with a variety of models of phenotypic evolution involving random shifts between multiple adaptive peaks. Similar results were obtained by substituting trait heritabilities and genetic covariances reconstructed by partitioning within- and among-colony phenotypic variance in place of the values based on breeding data. Quantitative genetic analysis of speciation in fossil bryozoan lineages is thus justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号