首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Neighbour diversity is the diversity of other plant species contacting a reference species. The expected value and confidence intervals of neighbour diversity assuming random contacts can be found using bootstrapping. In general, frequent species have higher expected neighbour diversities with narrow confidence intervals than infrequent species. In fixed sand dunes dominated by lichens and bryophytes most species have lower than expected neighbour diversity. However, the fixed sand dunes seem to be a mixture of two patch types, with the species in lichen-rich patches having higher diversities than the species in bryophyte-rich patches. In hay pastures, nearly all species have lower than expected neighbour diversities. The more frequent the species is, the less is its expected neighbour diversity. This implies that its frequent species are selective as to their neighbours, and so they drive a biological formation of spatial pattern.  相似文献   

2.
刘艳  皮春燕  田尚 《生态学杂志》2015,26(10):3145-3152
通过对重庆主城区44个样地的地面苔藓植物进行样方调查,应用物种多样性指数和典范对应分析(CCA),研究了该地区苔藓植物种类组成、物种多样性和群落与环境因子的关系.结果表明: 石生群落共有苔藓植物25科43属86种;土生群落共有苔藓植物22科28属46种.相比公园、风景区和缙云山国家级自然保护区,大学校园的石生和土生苔藓植物物种多样性水平较高.双向指示种分析结果将石生群落划分为3种类型,土生群落划分为2种类型.典范对应分析显示,林冠郁闭度是影响公园和大学校园内石生苔藓植物的主要环境因子;海拔、相对湿度和人为干扰程度是影响自然保护区和旅游景区内石生苔藓植物的主要环境因子.土壤〖JP2〗pH值、人为干扰程度和林冠郁闭度是影响公园和大学校园土生苔藓植物的主要环境因子;海拔、相对湿度和土壤含水量是影响自然保护区和旅游景区内土生苔藓植物的主要因子.  相似文献   

3.
Kel Cook  D. Lee Taylor 《Biotropica》2023,55(1):268-276
Epiphytes, which grow on other plants for support, make up a large portion of Earth's plant diversity. Like other plants, their surfaces and interiors are colonized by diverse assemblages of fungi that can benefit their hosts by increasing tolerance for abiotic stressors and resistance to disease or harm them as pathogens. Fungal communities associated with epiphytic plants and the processes that structure these communities are poorly known. To address this, we sampled seven epiphytic seedless plant taxa in a Costa Rican rainforest and examined the effects of host identity and microhabitat on external and endophytic fungal communities. We found low host specificity for both external and endophytic fungi and weak differentiation between epiphytic and neighboring epilithic plant hosts. High turnover in fungi within and between hosts and habitats reveals that epiphytic plant-associated fungal communities are highly diverse and suggests that they are structured by stochastic processes.  相似文献   

4.
A current key issue in ecology is the role of spatial effects on population and community dynamics. In this paper, we test several hypotheses related to spatial structures and coexistence of epiphytic tropical orchid species with special emphasis on the endemic species Broughtonia cubensis. More specifically, we explored the spatial structure of orchid–host plant communities at three different levels of organization (occupied vs. nonoccupied host trees, trees with B. cubensis vs. other orchids, and reproductive vs. nonreproductive B. cubensis plants). We mapped all potential host trees and orchids at three 20 × 20 m plots and applied techniques of spatial point pattern analysis such as mark connection and mark correlation functions to evaluate departures from randomized communities. We found spatial aggregation of trees with epiphytic orchids and segregation between trees with and without epiphytic orchids, and that there was an intraspecific spatial aggregation of B. cubensis in relation to the other seven epiphytic orchid species. Furthermore, we found spatial aggregation of reproductive B. cubensis individuals and segregation between reproductive and nonreproductive individuals on their phorophytes. Thus, orchid–host plant communities show hierarchical spatial structuring with aggregation and segregation at different levels of organization. Our results point to an enhancement of local species in the coexistence of tropical epiphytic orchid communities, by reducing competition through niche differentiation.  相似文献   

5.
The relationship between diversity and composition of neotropicalbromeliad communities and abiotic and autecological factors is still poorlyunderstood. In this study, I related point diversity (mean species number per400 m2 plot), diversity (total species number persite), representation of life-forms (epiphytes, terrestrials, saxicoles), andsix ecophysiological types of bromeliads at 74 forest sites in the BolivianAndes and adjacent lowlands to 12 environmental factors reflecting mostlyclimatic conditions. A total of 192 species, including 108 epiphytes, 106saxicoles, and 49 terrestrials, were recorded. Extrapolation revealed that theactual total species number in the region is at least 24% higher than recorded,especially among terrestrial (71%) and saxicolous (40%) species. Epiphytes weremore fully sampled because of their tendency towards larger range size andbecause they are distributed more evenly where they occur. Overall, theenvironmental factors explained up to 61% of the observed variance, reflectingall expected relationships such as the increase of tank bromeliads in wethabitats and of atmospheric bromeliads in arid regions. Point diversity almostalways showed higher regression coefficients than diversity, possibly as aresult of more complete sampling in small plots and because the abundance ofindividual species (which influences point diversity) may be more closelyrelated to abiotic factors than species richness. Despite somewhat lower diversity in arid areas, point diversity peaked in dry habitats,presumably due to the scarcity of competing epiphytic orchids, ferns, and aroidsthat lack the extreme adaptation of bromeliads to drought stress and lownutrient availability. The decline of epiphytic bromeliad diversity at highelevations appears to be linked to low temperatures, particularly increasingfrost frequency. It is hypothesized that the low diversity of bromeliads inhumid tropical lowland forests is caused by low photosynthetic rates due to highwater stress and low light availability combined with high respiration losses.In combination, these factors would impede the maintenance of a positive carbonbalance.  相似文献   

6.
Abstract. We compared the diversity, phytogeography, and plant communities in two mid-latitude alpine tundras with comparable aerial and elevational extents: Changbaishan Summit in eastern Asia and Indian Peaks in western North America. Despite wide separation, the two areas shared 72 species. In all, 43% of the species on Changbaishan Summit are also distributed in the alpine zones of western North America, while 22% of the species on Indian Peaks are also distributed in the alpine zones of eastern Asia. Almost all the shared species also occur in the Beringian region. Phytogeographical profiles of species and genera showed that 69% of species and over 90% of genera in both alpine tundras belong to the three phytogeographical categories: cosmopolitan, circumpolar, and Asian-North American. We attributed the current floristic relationship between these widely separated areas to the periodic past land connection between the two continents during the Tertiary and Pleistocene. Indian Peaks has a closer floristic relationship with the Arctic tundra than does Changbaishan Summit. Indian Peaks also has 45% higher species richness and lower vegetation cover than Changbaishan Summit. Plant communities from the two areas were completely separated in the two-way indicator species analysis and non-metric multidimensional scaling on floristic data at both species and generic levels, whereas ordination of communities by soil data produced a greater overlap. The plant communities on Changbaishan Summit in general have lower alpha diversity, higher beta diversity (lower between-community floristic similarity), and more rare species than does Indian Peaks. Mosaic diversity does not differ in the two alpine tundras, although the analysis suggests that Changbaishan Summit communities are more widely spaced on gradients than the Indian Peaks communities.  相似文献   

7.
Ecological communities are structured by competitive, predatory, mutualistic and parasitic interactions combined with chance events. Separating deterministic from stochastic processes is possible, but finding statistical evidence for specific biological interactions is challenging. We attempt to solve this problem for ant communities nesting in epiphytic bird’s nest ferns (Asplenium nidus) in Borneo’s lowland rainforest. By recording the frequencies with which each and every single ant species occurred together, we were able to test statistically for patterns associated with interspecific competition. We found evidence for competition, but the resulting co-occurrence pattern was the opposite of what we expected. Rather than detecting species segregation—the classical hallmark of competition—we found species aggregation. Moreover, our approach of testing individual pairwise interactions mostly revealed spatially positive rather than negative associations. Significant negative interactions were only detected among large ants, and among species of the subfamily Ponerinae. Remarkably, the results from this study, and from a corroborating analysis of ant communities known to be structured by competition, suggest that competition within the ants leads to species aggregation rather than segregation. We believe this unexpected result is linked with the displacement of species following asymmetric competition. We conclude that analysing co-occurrence frequencies across complete species assemblages, separately for each species, and for each unique pairwise combination of species, represents a subtle yet powerful way of detecting structure and compartmentalisation in ecological communities.  相似文献   

8.
Resource segregation by species is a cornerstone ecological concept that may result from several processes such as interspecific competition, and can help structuring communities, in particular parasitoid communities. Phorid parasitoid flies that use ants as hosts usually employ one host per individual parasitoid, and thus the pressure for segregating the host resource should be high. At a particular community, these parasitoids might segregate resources by temporal differences in activity patterns, using different host species or nests from those available. Even if parasitoid species coexist on the same nest, they can take advantage of worker polymorphism and task division, searching for ants performing different tasks at different microsites of the same nest. Here we evaluated the segregation of parasitoid species in these hypothesized axes using leaf-cutting ant phorid parasitoids as a model system. We analyzed temporal data collected at two localities with contrasting host species richness; and compared parasitoid co-occurrence at the different niche axis. For most of the hypothesized niche axes tested we found either no departures from random expectations or significantly more niche overlap than expected by chance, ruling out the existence of biologically relevant host resource segregation in this system. However, there was evidence of segregation for some species, since one parasitoid species was only found in winter and another species showed a negative correlation of its abundance over nests with other two species. Furthermore, we found that several species were flexible in host use; Atta phorids varied in average host sizes preferred, whereas Acromyrmex phorids that were generalists were able to use different host species or microsites for host location. From an applied perspective, these results are encouraging when selecting species for the control of leaf-cutting ants because parasitoids coexistence seems to be unaffected by their overlap in niche dimensions.  相似文献   

9.
Abstract. Two neighbouring even-aged 130-yr old Picea abies trees in a homogeneous stand can differ substantially with respect to their epiphytic vegetation. Sampled branches from the canopy of one tree harboured 781 specimens of the old forest lichen Usnea longissima of which only 50 could be seen from the ground, whereas no U. longissima were found on its nearest neighbour. Usnea longissima was most abundant on branch tips in lower parts of the canopy on branch segments having the highest biomass of other alectorioid species. Trees with and without U. longissima showed a different pattern in their mineral composition, suggesting that a tree-specific difference in nutritional status might contribute to explain the patchy distribution of this lichen within seemingly homogeneous stands.  相似文献   

10.
Terrestrial plants serve as large and diverse habitats for a wide range of pathogenic and nonpathogenic microbes, yet these communities are not well described and little is known about the effects of plant defense on microbial communities in nature. We designed a field experiment to determine how variation in two plant defense signaling pathways affects the size, diversity, and composition of the natural endophytic and epiphytic bacterial communities of Arabidopsis thaliana. To do this, we provide an initial characterization of these bacterial communities in one population in southwestern Michigan, United States, and we compare these two communities among A. thaliana mutants deficient in salicylic acid (SA) and jasmonic acid (JA) signaling defense pathways, controls, and plants with artificially elevated levels of defense. We identified 30 distinct bacterial groups on A. thaliana that differ in colony morphology and 16S rRNA sequence. We show that induction of SA-mediated defenses reduced endophytic bacterial community diversity, whereas plants deficient in JA-mediated defenses experienced greater epiphytic bacterial diversity. Furthermore, there was a positive relationship between total community size and diversity, indicating that relatively susceptible plants should, in general, harbor higher bacterial diversity. This experiment provides novel information about the ecology of bacteria on A. thaliana and demonstrates that variation in two specific plant-signaling defense pathways can influence bacterial diversity on plants.  相似文献   

11.
A study of epiphytic gastropods associated with two submerged macrophytes (Myriophyllum spicatum and Vallisneria americana) was conducted at a soft and at a hard water site in the St. Lawrence River during two non-consecutive years in order to compare effects of macrophyte species and biomass, site and year in gastropod community structure. There was no effect of macrophyte species on total gastropod abundance nor on gastropod diversity, and few gastropod species showed a marked preference for either macrophyte species. Inter-site and inter-annual variations in diversity, total gastropod abundance and gastropod community structure were greater than variations among macrophytes. However, analysis of variations of epiphytic gastropod communities in one of the two sites shows that abiotic factors are important in explaining epiphytic gastropod distribution. Our results and results of other studies on gastropod population dynamics in the St. Lawrence River indicate that intra- and interspecific competition between gastropods is important on macrophytes and that they must be carefully considered in order to understand epiphytic community structure and population dynamics.  相似文献   

12.

An understanding of the diversity spatial organization in plant communities provides essential information for management and conservation planning. In this study we investigated, using a multi-species approach, how plant–plant interactions determine the local structure and composition of diversity in a set of Mediterranean plant communities, ranging from semi-arid to subalpine habitats. Specifically, we evaluated the spatial pattern of diversity (i.e., diversity aggregation or segregation) in the local neighborhood of perennial plant species using the ISAR (individual species–area relationship) method. We also assessed the local pattern of beta-diversity (i.e., the spatial heterogeneity in species composition among local assemblages), including the contribution of species turnover (i.e., species replacement) and nestedness (i.e., differences in species richness) to the overall local beta-diversity. Our results showed that local diversity segregation decreased in the less productive plant communities. Also, we found that graminoids largely acted as diversity segregators, while forbs showed more diverse neighborhoods than expected in less productive study sites. Interestingly, not all shrub and dwarf shrub species aggregated diversity in their surroundings. Finally, an increase in nestedness was associated with less segregated diversity patterns in the local neighborhood of shrub species, underlining their role in creating diversity islands in less productive environmental conditions. Our results provide further insights into the effect of plant–plant interactions in shaping the structure and composition of diversity in Mediterranean plant communities, and highlight the species and groups of species that management and conservation strategies should focus on in order to prevent a loss of biodiversity.

  相似文献   

13.
Phenological segregation among species in a community is assumed to promote coexistence, as using resources at different times reduces competition. However, other unexplored nonalternative mechanisms can also result in a similar outcome. This study first tests whether plants can redistribute nitrogen (N) among them based on their nutritional temporal demand (i.e. phenology). Field 15N labelling experiments showed that 15N is transferred between neighbour plants, mainly from low N-demand (late flowering species, not reproducing yet) to high N-demand plants (early flowering species, currently flowering-fruiting). This can reduce species' dependence on pulses of water availability, and avoid soil N loss through leaching, having relevant implications in the structuring of plant communities and ecosystem functioning. Considering that species phenological segregation is a pervasive pattern in plant communities, this can be a so far unnoticed, but widely spread, ecological process that can predict N fluxes among species in natural communities, and therefore impact our current understanding of community ecology and ecosystem functioning.  相似文献   

14.
Abstract This article deals with the physiological ecology of the Bromeliaceae, a large neotropical family containing both terrestrial and epiphytic forms, as well as many species with crassulacean acid metabolism (CAM). The article is in two parts. In the first, we review what is known of the occurrence of CAM and C3 species in the Bromeliaceae. The photosynthetic pathways are discussed in the context of the major taxonomic divisions within the family and the great diversity of bromeliad life-forms. Of the three subfamilies, the Pitcairnioideae contain both C3 and CAM species and are essentially all terrestrial. In contrast, the Tillandsioideae are entirely epiphytic or saxicolous, with CAM species being restricted to the genus Tillandsia, And in the Bromelioideae all species show CAM, but terrestrial and epiphytic forms are found in about equal numbers. The evidence suggests that both CAM and the epiphytic habit arose more than once in the family's evolutionary history. In the second part we consider the photosynthetic ecology of the various bromeliad life-forms in more detail using the specific example of Trinidad (West Indies). CAM bromeliads tend to be centred on the drier regions of the island and C3 forms on the wetter areas. However, at any one site there is a marked vertical stratification of species within the forest profile. Based on the known habitat preferences of the bromeliads, six contrasting sites were selected for field studies in Trinidad. These ranged from arid coastal scrub to montane rain forest, the vegetational and climatic characteristics of which are described here. The constancy of δ13C values (carbon-isotope ratios) for individual CAM species in these markedly different habitats emphasized the need for ecophysiological studies to characterize environmental effects on CO2 assimilation and transpiration. The following papers in this series present the results of a comparative investigation of gas exchange and leaf water relations of CAM and C3 bromeliads in situ at the various sites.  相似文献   

15.
In semiarid Mediterranean ecosystems, epiphytic plant species are practically absent, and only some species of palm trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study, we focused on Sonchus tenerrimus L. plants growing as facultative epiphytes in P. dactylifera and its terrestrial forms growing in adjacent soils. Our aim was to determine the possible presence of arbuscular mycorrhizal fungi (AMF) in these peculiar habitats and to relate AMF communities with climatic variations. We investigated the AMF community composition of epiphytic and terrestrial S. tenerrimus plants along a temperature and precipitation gradient across 12 localities. Epiphytic roots were colonized by AMF, as determined by microscopic observation; all of the epiphytic and terrestrial samples analyzed showed AMF sequences from taxa belonging to the phylum Glomeromycota, which were grouped in 30 AMF operational taxonomic units. The AMF community composition was clearly different between epiphytic and terrestrial root samples, and this could be attributable to dispersal constraints and/or the contrasting environmental and ecophysiological conditions prevailing in each habitat. Across sites, the richness and diversity of terrestrial AMF communities was positively correlated with rainfall amount during the most recent growing season. In contrast, there was no significant correlation between climate variables and AMF richness and diversity for epiphytic AMF communities, which suggests that the composition of AMF communities in epiphytic habitats appears to be largely determined by the availability and dispersion of fungal propagules from adjacent terrestrial habitats.  相似文献   

16.
对武汉市7个中心城区和部分远郊城区共26个样点73个样地的苔藓群落进行调查,采集苔藓植物样本共431份。经鉴定调查区内共有苔藓植物20科35属91种,其中狭叶小羽藓(Haplocladium angustifolium(Hampe et C.Muell.)Broth.)和钝叶绢藓(Entodon obtusatus Broth.)等为优势种,分布于其中的24个样点。多样性指数分析结果显示,位于青龙山国家森林公园的α多样性Patrick和Shannon-Wiener指数最高,说明该样点苔藓植物群落的复杂程度高,群落所含信息量大。Patrick指数与环境因子的Pearson相关性分析结果显示,土壤含水率和与主要干道距离是显著影响地面生苔藓植物多样性的环境因子,而显著影响树附生苔藓植物多样性的环境因子仅与距主要干道距离相关。用典范对应分析法(CCA)研究26个样点中苔藓植物的盖度与主要环境因子的关系,结果发现人为干扰程度、草本盖度、与城市主要干道的距离等对地面生和树附生苔藓植物的分布都有显著影响。其中地面生苔藓植物的分布受人为干扰和草本盖度影响最为显著;而树附生苔藓植物的分布受附生树干胸径及与主要干道距离影响最为显著。研究结果表明武汉市区苔藓植物的多样性和分布受人为干扰较大,树附生苔藓对汽车尾气等因素更为敏感。  相似文献   

17.
Interspecific interactions play an important role in community assembly. A basic ecological question is whether interactions are specialized (one to one) or generalized (many to many). Specialization of interactions should ideally be assessed across several populations because species could be specialists at a particular site but generalists when several sites are considered. Mycorrhizal interactions are fundamental for orchid life and distribution, but their level of specialization is still under debate. To understand the extent to which epiphytic orchids are specialists in their mycorrhizal interactions, we studied the richness and phylogenetic structure of mycobionts across different sites, and the similarity in the mycobiont composition between coexisting orchid species. We sequenced the nrDNA ITS2 region and explored the mycobiont communities associated with two epiphytic orchids, Epidendrum marsupiale and Cyrtochilum pardinum, at two elevations within two sites in Ecuador. We found 108 OTUs belonging to Serendipitaceae (66), Ceratobasidiaceae (22), Atractiellales (11) and Tulasnellaceae (9). Orchids at the highest elevations hosted the highest OTU richness. The two orchid species shared a high percentage of mycobionts between all sites. No phylogenetic structure within orchid mycorrhizal communities was found at any sites or elevations. Our results indicate that the studied orchids are generalists and share a broad group of mycobionts (16 OTUs) with no apparent niche segregation within or between sites.  相似文献   

18.
Aims The effects of traditional land use by mobile livestock keepers on biodiversity in forest steppe ecotones are insufficiently studied. Epiphytes are an important part of forest plant diversity. Here we analyze differences in the diversity and composition of the epiphytic lichen vegetation between the edge and the interior of Siberian larch forests in the Khangai Mountains, western Mongolia, which are highly subdivided into patches. We asked whether the epiphytic lichen vegetation at the forest edge differs significantly from that in the interior, whether the edge is inhabited by more nitrophilous species than the interior and whether the density of nomad camps around the forest affects epiphytic lichen diversity.Methods Cover percentages of epiphytic lichen species were recorded from 20 trees per plot on 6 plots in the interior and 6 plots at the edge of Larix sibirica forests. The position of nomad summer camps was surveyed using Global Positioning System. Data were analyzed with pairwise significance tests, analysis of similarities, nonmetric multidimensional scaling and canonical correspondence analysis.Important findings The composition of the epiphytic lichen vegetation clearly differed between the two habitats, with more species being more frequent at the edge than in the interior. However, there was no difference in species richness (α-diversity). The epiphyte vegetation at the edge was more uniform and characterized by lower variation of tree-level α-diversity and lower β-diversity than in the interior. At the edge, only nitrophytic lichens were dominant, whereas in the interior, nitrophytes and acidophytes were among the dominant species. This pattern is probably attributable to the spatial heterogeneity of the intensity of forest grazing and was shown to be influenced by the density of nomad summer camps in the vicinity of the forests. Tree-level α-diversity increased with stem diameter, but high-diameter trees were rare. The results suggest that the present level of forest patchiness and the effect of forest grazing increases the diversity of epiphytic lichens on the landscape level, while logging of high-diameter trees reduces lichen diversity.  相似文献   

19.
We examine the spatial pattern of woody species diversity at different scales, in two sites of Mt. Holomontas in northern Greece, which falls within the transitional zone between temperate forests and Mediterranean-type ecosystems. We investigate how diversity is distributed in space and whether the perceived pattern changes with the scale of observation. We use two different metrics of diversity: species richness and species turnover. Our main finding is that the spatial pattern of diversity changes with the scale of observation or analysis. For a given scale, the pattern of species richness (alpha diversity) is negatively correlated with the pattern of species turnover (beta diversity). Species-rich areas have more species in common with their neighbors than species-poor areas. The between-scale disparity of the spatial pattern of diversity may be a general feature of ecological systems. For this to be validated, studies with different groups of species in different biomes and in different biogeographical areas are required; our study contributes to this direction providing evidence that this holds true for woody species in Mediterranean communities. Finally, we discuss how these findings might affect important issues in theoretical and applied ecology, such as identifying the environmental factors driving biodiversity.  相似文献   

20.
Lichens are symbiotic organisms that comprise a fungus and a photosynthetic partner wich are recognized as a good indicator of climate change. However, our understanding of how aridity affects the diversity of saxicolous lichens in drylands is still limited. To evaluate the relationship between saxicolous lichen diversity and aridity in a central México dryland, a geographical transect was established of 100 km to build an aridity gradient in the semiarid zone of the State of Querétaro, Mexico, comprising ten sampling sites with a 10 km separation. Species richness, abundance and diversity of soil lichen species were recorded using two sampling methods: the quadrat-intercept and the line-intercept method, to compare their performance in assessing soil lichen diversity in drylands. The number of species and Shannon diversity of saxicolous lichens were higher at intermediate values of the aridity index (AI = 0.10–0.34). Quadrat intercept and point intercept methods gave quite similar results, which means that the selected method does not influence the results in a significant way. This study confirms the role of saxicolous lichens as climate change indicators and reveals the importance of the sampling method selection in the evaluation of different parameters of soil lichen diversity in drylands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号