首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human skin is repeatedly exposed to mechanical stretching in vivo, but in an ordinary culture of skin cells this prominent feature has been neglected. In order to study whether mechanical stretching plays a role for human melanocytes, we have established a culture technique to mimic this physical stretching: primary cultures of human melanocytes were plated on silicon supports, which undergo a stretching of about 10% of the initial length. After application of repeated stretching and relaxation for 4 days, cell count was significantly (about 40%) enhanced. In addition, we found approximately 2-fold increase in heat shock protein (HSP) 90, both at the protein and mRNA level. HSP 90 is known to bind to Raf-1 and, therefore, may contribute to the Raf-1-MEK (mitogen-activated protein-kinase kinase)-MAPK (mitogen-activated protein-kinase) signaling pathway. Disruption of the Raf-1-HSP 90 multimolecular complex by geldanamycin lead to a considerable decrease in melanocyte cell count. However, geldanamycin did not reverse the stretch-induced growth stimulation. Therefore, the stretch-mediated up-regulation of HSP 90 expression in melanocytes appears to be independent of stretch-mediated growth stimulation. These findings have strong implications for the in vitro cultivation of melanocytes for transplantation purposes.  相似文献   

2.
Molecular aspects of mechanical stress-induced cardiac hypertrophy   总被引:1,自引:0,他引:1  
To elucidate the signal transduction pathway from external stimuli to nuclear gene expression in mechanical stress-induced cardiac hypertrophy, we examined the time course of activation of protein kinases such as Raf-1 kinase (Raf-1), mitogen-activated protein kinase kinase (MAPKK), MAP kinases (MAPKs) and 90-kDa ribosomal S6 kinase (p90rsk) in neonatal rat cardiomyocytes. Mechanical stretch rapidly activated Raf-1 and its maximal activation was observed at 1–2 min after stretch. The activity of MAPKK was also increased by stretch, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10–30 min after stretch, respectively. Next, the relationship between mechanical stress-induced hypertrophy and the cardiac renin-angiotensin system was investigated. When the stretch-conditioned culture medium was transferred to the culture dish of non-stretched cardiac myocytes, the medium activated MAPK activity slightly but significantly, and the activation was completely blocked by the type 1 angiotensin II receptor antagonist, CV-11974. However, activation of Raf-1 and MAPKs provoked by stretching cardiomyocytes was only partially suppressed by pretreatment with CV-11974. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1, MAPKK, MAPKs and p90rsk, and that angiotensin II, which is secreted from stretched myocytes, activates a part of these protein kinases.Abbreviations MAPK mitogen-activated protein kinase - MAPKK MAP kinase kinase - Raf-1 - Raf- 1 kinase p90rsk, 90 kDa ribosomal S6 kinase; AngII - angiotensin II - MAPKKK MAP kinase kinase kinase - rMAPK recombinant MAPKK fused to gluthathione S transferase - MMAKK recombinant MAPK fused to maltose binding protein - MBP myelin basic protein - ACE angiotensin-converting enzyme  相似文献   

3.
p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function   总被引:11,自引:0,他引:11       下载免费PDF全文
Genetic screens in Drosophila have identified p50(cdc37) to be an essential component of the sevenless receptor/mitogen-activated kinase protein (MAPK) signaling pathway, but neither the function nor the target of p50(cdc37) in this pathway has been defined. In this study, we examined the role of p50(cdc37) and its Hsp90 chaperone partner in Raf/Mek/MAPK signaling biochemically. We found that coexpression of wild-type p50(cdc37) with Raf-1 resulted in robust and dose-dependent activation of Raf-1 in Sf9 cells. In addition, p50(cdc37) greatly potentiated v-Src-mediated Raf-1 activation. Moreover, we found that p50(cdc37) is the primary determinant of Hsp90 recruitment to Raf-1. Overexpression of a p50(cdc37) mutant which is unable to recruit Hsp90 into the Raf-1 complex inhibited Raf-1 and MAPK activation by growth factors. Similarly, pretreatment with geldanamycin (GA), an Hsp90-specific inhibitor, prevented both the association of Raf-1 with the p50(cdc37)-Hsp90 heterodimer and Raf-1 kinase activation by serum. Activation of Raf-1 via baculovirus coexpression with oncogenic Src or Ras in Sf9 cells was also strongly inhibited by dominant negative p50(cdc37) or by GA. Thus, formation of a ternary Raf-1-p50(cdc37)-Hsp90 complex is crucial for Raf-1 activity and MAPK pathway signaling. These results provide the first biochemical evidence for the requirement of the p50(cdc37)-Hsp90 complex in protein kinase regulation and for Raf-1 function in particular.  相似文献   

4.
Interferons (IFNs) inhibit cell growth in a Stat1-dependent fashion that involves regulation of c-myc expression. IFN-gamma suppresses c-myc in wild-type mouse embryo fibroblasts, but not in Stat1-null cells, where IFNs induce c-myc mRNA rapidly and transiently, thus revealing a novel signaling pathway. Both tyrosine and serine phosphorylation of Stat1 are required for suppression. Induced expression of c-myc is likely to contribute to the proliferation of Stat1-null cells in response to IFNs. IFNs also suppress platelet-derived growth factor (PDGF)-induced c-myc expression in wild-type but not in Stat1-null cells. A gamma-activated sequence element in the promoter is necessary but not sufficient to suppress c-myc expression in wild-type cells. In PKR-null cells, the phosphorylation of Stat1 on Ser727 and transactivation are both defective, and c-myc mRNA is induced, not suppressed, in response to IFN-gamma. A role for Raf-1 in the Stat1-independent pathway is revealed by studies with geldanamycin, an HSP90-specific inhibitor, and by expression of a mutant of p50(cdc37) that is unable to recruit HSP90 to the Raf-1 complex. Both agents abrogated the IFN-gamma-dependent induction of c-myc expression in Stat1-null cells.  相似文献   

5.
6.
Ansamycin antibiotic, geldanamycin has a unique pharmacological effect to bind to heat shock protein 90 (hsp90) and deplete hsp90 substrates. We investigated the immunopharmacological effects of geldanamycin. Geldanamycin depleted cellular Raf-1 of rat splenic cells without affecting the steady state levels of hsp90 and downstream mitogen activated protein (MAP) kinases, ERK1 and ERK2. In parallel, it inhibited mitogen-induced nuclear factor-kappa B (NF-kappa B) activation in these cells. Geldanamycin also had a potent suppressive effect on recall antigen-induced T cell proliferation, with an IC50 value of 1 nM. In vivo, geldanamycin suppressed the progression of adjuvant-induced arthritis dose-dependently. These results suggest that geldanamycin exerts an immunosuppressive effect partly through destabilizing Raf-1, and raise a new strategy for the prevention of inflammatory diseases.  相似文献   

7.
Triggering tumor necrosis factor receptor-1 (TNFR1) induces apoptosis in various cell lines. In contrast, stimulation of TNFR1 in L929sA leads to necrosis. Inhibition of HSP90, a chaperone for many kinases, by geldanamycin or radicicol shifted the response of L929sA cells to TNF from necrosis to apoptosis. This shift was blocked by CrmA but not by BCL-2 overexpression, suggesting that it occurred through activation of procaspase-8. Geldanamycin pretreatment led to a proteasome-dependent decrease in the levels of several TNFR1-interacting proteins including the kinases receptor-interacting protein, inhibitor of kappa B kinase-alpha, inhibitor of kappa B kinase-beta, and to a lesser extent the adaptors NF-kappaB essential modulator and tumor necrosis factor receptor-associated factor 2. As a consequence, NF-kappa B, p38MAPK, and JNK activation were abolished. No significant decrease in the levels of mitogen-activated protein kinases, adaptor proteins TNFR-associated death domain and Fas-associated death domain, or caspase-3, -8, and -9 could be detected. These results suggest that HSP90 client proteins play a crucial role in necrotic signaling. We conclude that inhibition of HSP90 may alter the composition of the TNFR1 complex, favoring the caspase-8-dependent apoptotic pathway. In the absence of geldanamycin, certain HSP90 client proteins may be preferentially recruited to the TNFR1 complex, promoting necrosis. Thus, the availability of proteins such as receptor-interacting protein, Fas-associated death domain, and caspase-8 can determine whether TNFR1 activation will lead to apoptosis or to necrosis.  相似文献   

8.
HSP90 is a central player in the folding and maturation of many proteins. More than two hundred HSP90 clients have been identified by classical biochemical techniques including important signaling proteins with high relevance to human cancer pathways. HSP90 inhibition has thus become an attractive therapeutic concept and multiple molecules are currently in clinical trials. It is therefore of fundamental biological and medical importance to identify, ideally, all HSP90 clients and HSP90 regulated proteins. To this end, we have taken a global and a chemical proteomic approach in geldanamycin treated cancer cell lines using stable isotope labeling with amino acids in cell culture and quantitative mass spectrometry. We identified >6200 proteins in four different human cell lines and ~1600 proteins showed significant regulation upon drug treatment. Gene ontology and pathway/network analysis revealed common and cell-type specific regulatory effects with strong connections to unfolded protein binding and protein kinase activity. Of the 288 identified protein kinases, 98 were geldanamycin treatment including >50 kinases not formerly known to be regulated by HSP90. Protein turn-over measurements using pulsed stable isotope labeling with amino acids in cell culture showed that protein down-regulation by HSP90 inhibition correlates with protein half-life in many cases. Protein kinases show significantly shorter half lives than other proteins highlighting both challenges and opportunities for HSP90 inhibition in cancer therapy. The proteomic responses of the HSP90 drugs geldanamycin and PU-H71 were highly similar suggesting that both drugs work by similar molecular mechanisms. Using HSP90 immunoprecipitation, we validated several kinases (AXL, DDR1, TRIO) and other signaling proteins (BIRC6, ISG15, FLII), as novel clients of HSP90. Taken together, our study broadly defines the cellular proteome response to HSP90 inhibition and provides a rich resource for further investigation relevant for the treatment of cancer.  相似文献   

9.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   

10.
11.
HSP90 chaperones are essential regulators of cellular function, as they ensure the appropriate conformation of multiple key client proteins. Four HSP90 isoforms were identified in the protozoan parasite Theileria annulata. Partial characterization was undertaken for three and localization confirmed for cytoplasmic (TA12105), endoplasmic reticulum (TA06470), and apicoplast (TA10720) forms. ATPase activity and binding to the HSP90 inhibitor geldanamycin were demonstrated for recombinant TA12105, and all three native forms could be isolated to varying extents by binding to geldanamycin beads. Because it is essential, HSP90 is considered a potential therapeutic drug target. Resistance to the only specific Theileriacidal drug is increasing, and one challenge for design of drugs that target the parasite is to limit the effect on the host. An in vitro cell culture system that allows comparison between uninfected bovine cells and the T. annulata‐infected counterpart was utilized to test the effects of geldanamycin and the derivative 17‐AAG. T. annulata‐infected cells had greater tolerance to geldanamycin than uninfected cells yet exhibited significantly more sensitivity to 17‐AAG. These findings suggest that parasite HSP90 isoform(s) can alter the drug sensitivity of infected host cells and that members of the Theileria HSP90 family are potential targets worthy of further investigation.  相似文献   

12.
13.
Gao  Wansheng  Yang  Han  Xu  Le  Huang  Wenbo  Yang  Yanfeng 《Neurochemical research》2021,46(11):2897-2908

FK1706 is a novel non-immunosuppressive immunophilin ligand with neurotrophic activity and exerts its neurotrophic effect through NGF. The present study aimed to elaborate on the neurotrophic activity and the mechanism of action of FK1706 in end-to-side neurorrhaphy rats and SH-SY5Y cells. In the regenerating nerves of neurorrhaphy rats, FK1706 increased the thickness of myelin sheath and the level of nerve regeneration-related proteins. The mechanism of action of FK1706 on neurite regrowth was elucidated in vitro by incubating SH-SY5Y cells in different conditions (Control, NGF, FK1706, NGF?+?FK1706, NGF?+?FK1706?+?geldanamycin). Under the conditions where NGF was used, the phosphorylation level of major proteins (Raf-1 and ERK) in the Ras/Raf/MAPK/ERK signaling pathway related to SH-SY5Y cell proliferation was significantly enhanced following the application of FK1706. The number of viable cells, cell viability and neurite length of SH-SY5Y cells was maximal when NGF and FK1706 were used simultaneously. The binding level of HSP90 and Raf-1 in FK1706 group was the highest. These results indicated that FK1706 could significantly promote nerve regeneration after neurorrhaphy. The putative mechanism of action stated that FK1706 could promote the binding of HSP90 and Raf-1, make Raf-1 continue to be activated, thereby affecting key proteins in the Ras/Raf/MAPK/ERK signaling pathway related to the neurotrophic effects of NGF to promote the proliferation and neurite regrowth of nerve cells.

  相似文献   

14.
We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70–85% by the selective HSP90 inhibitor geldanamycin (2 μm, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40–45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies.  相似文献   

15.
We have recently identified and cloned a novel member of mitogen-activated protein kinase superfamily protein, MOK (Miyata, Y., Akashi, M., and Nishida, E. (1999) Genes Cells 4, 299-309). To address its regulatory mechanisms, we searched for cellular proteins that specifically associate with MOK by co-immunoprecipitation experiments. Several cellular proteins including a major 90-kDa molecular chaperone HSP90 were found associated with MOK. Treatment of cells with geldanamycin, an HSP90-specific inhibitor, rapidly decreased the protein level of MOK, and the decrease was attributed to enhanced degradation of MOK through proteasome-dependent pathways. Our data suggest that the association with HSP90 may regulate intracellular protein stability and solubility of MOK. Experiments with a series of deletion mutants of MOK indicated that the region encompassing the protein kinase catalytic subdomains I-IV is required for HSP90 binding. Closely related protein kinases (male germ cell-associated kinase and male germ cell-associated kinase-related kinase) were also found to associate with HSP90, whereas conventional mitogen-activated protein kinases (extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase/stress-activated protein kinase) were not associated with HSP90. In addition, we found that other molecular chaperones including Cdc37, HSC70, HSP70, and HSP60 but not GRP94, FKBP52, or Hop were detected specifically in the MOK-HSP90 immunocomplexes. These results taken together suggest a role of a specific set of molecular chaperones in the stability of signal-transducing protein kinases.  相似文献   

16.
Heat shock protein (Hsp) 90 is a ubiquitously expressed chaperone that stabilizes expression of multiple signaling kinases involved in growth regulation, including ErbB2, Raf-1, and Akt. The chaperone activity of Hsp90 requires ATP, which binds with approximately 10-fold lower affinity than ADP. This suggests that Hsp90 may be a physiological ATP sensor, regulating the stability of growth signaling cascades in relation to cellular energy charge. Here we show that lowering ATP concentration by inhibiting glycolysis or mitochondrial respiration in isolated myocytes triggers rapid dissociation of Hsp90 from ErbB2 and degradation of ErbB2 along with other client proteins. The effect of disrupting Hsp90 chaperone activity by ATP depletion was similar to the effect of the pharmacological Hsp90 inhibitor geldanamycin. ATP depletion-induced disruption of Hsp90 chaperone activity was associated with cellular resistance to growth factor activation of intracellular signaling. ErbB2 degradation was also induced by the physiological stress of beta-adrenergic receptor stimulation in electrically stimulated cells. These results support a role for Hsp90 as an ATP sensor that modulates tissue growth factor responsiveness under metabolically stressed conditions and provide a novel mechanism by which cellular responsiveness to growth factor stimulation is modulated by cellular energy charge.  相似文献   

17.
Heat-shock protein90 (HSP90) plays an essential role in maintaining stability and activity of its clients. HSP90 is involved in cell differentiation and survival in a variety of cell types. To elucidate the possible role of HSP90 in myogenic differentiation and cell survival, we examined the time course of changes in the expression of myogenic regulatory factors, intracellular signaling molecules, and anti-/pro-apoptotic factors when C2C12 cells were cultured in differentiation condition in the presence of a HSP90-specific inhibitor, geldanamycin. Furthermore, we examined the effects of geldanamycin on muscle regeneration in vivo. Our results showed that geldanamycin inhibited myogenic differentiation with decreased expression of MyoD, myogenin and reduced phosphorylation levels of Akt1. Geldanamycin had little effect on the phosphorylation levels of p38MAPK and ERK1/2 but reduced the phosphorylation levels of JNK. Along with myogenic differentiation, geldanamycin increased apoptotic nuclei with decreased expression of Bcl-2. The skeletal muscles forced to regenerate in the presence of geldanamycin were of poor repair with small regenerating myofibers and increased connective tissues. Together, our findings suggest that HSP90 may modulate myogenic differentiation and may be involved in cell survival.  相似文献   

18.
Activation of the fibroblast growth factor (FGF) receptor 3 (FGFR3) has been linked to the development of human cancers by mechanisms that are not well understood. The MUC1 oncoprotein is aberrantly overexpressed by certain hematologic malignancies and most human carcinomas. The present studies show that MUC1 associates with FGFR3. Stimulation of cells with FGF1 increased the interaction between MUC1 and FGFR3. FGF1 stimulation also induced c-Src-dependent tyrosine phosphorylation of the MUC1 cytoplasmic domain on a YEKV motif. FGF1-induced tyrosine phosphorylation of MUC1 was associated with increased binding of MUC1 to beta-catenin and targeting of MUC1 and beta-catenin to the nucleus. FGF1 also induced binding of MUC1 to the heat shock protein 90 (HSP90) chaperone by a mechanism dependent on phosphorylation of the YEKV motif. Notably, beta-catenin and HSP90 compete for binding to the MUC1 cytoplasmic domain, indicating that MUC1 forms mutually exclusive complexes with these proteins. The results also show that inhibition of HSP90 with geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin attenuates FGF1-induced binding of MUC1 to HSP90 and targeting of MUC1 to the mitochondrial outer membrane. These findings indicate that FGF1 induces phosphorylation of MUC1 on YEKV and thereby activates two distinct pathways: (a) nuclear localization of MUC1 and beta-catenin and (b) delivery of MUC1 to mitochondria by HSP90.  相似文献   

19.
The 90-kDa heat shock protein (HSP90) is implicated in the conformational maturation and stabilization of a variety of client proteins with receptor and signal transduction functions. The objective of this study was to assess its expression in primary acute myeloid leukemia (AML) cells and to evaluate its biological and clinical significance. The in vitro effects of 17-AAG, a selective inhibitor of HSP90, was also evaluated. Cells from 65 patients with newly diagnosed AML were studied. The expression of HSP90 correlated with that of CD34, p170, and bcl-2 proteins but not with white cell counts, FAB or WHO subtype, or cytogenetics. HSP90 levels were also higher in samples exhibiting an autonomous growth in liquid culture or forming spontaneous colonies. A concomitant constitutive activation of the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/AKT pathways was observed in a majority of samples and was significantly correlated with HSP90 expression. All patients received induction chemotherapy. The percentages of HSP90-, CD34-, bcl-2-, and p170-positive cells were higher in patients who did not attain complete remission. Survival was also shorter in patients with high levels of HSP90. In vitro exposure of leukemic cells to 17-allylamino-demethoxy geldanamycin (17-AAG) resulted in inhibition of growth in liquid and clonogeneic cultures and in apoptosis, at concentrations which in most cases were not toxic for normal CD34-positive or progenitor cells. The concentration inhibiting 50% growth at 72 h in liquid culture correlated with HSP90 expression. Our study suggests that HSP90 is overexpressed in poor-prognosis AML cells and plays a role in cell survival and resistance to chemotherapy. Targeted therapy with 17-AAG represents a promising antileukemic strategy in adult AML.  相似文献   

20.
The Raf-1 proto-oncogene protein kinase can be phosphorylated and activated after stimulation of cells with insulin and a variety of other growth factors and mitogens. We recently presented evidence that insulin and certain other growth factors activated one or more Raf-1 kinase kinase activities (Lee, R.M., Rapp, U. R., and Blackshear, P.J. (1991) J. Biol. Chem. 266, 10351-10357). In the present study, four peaks of Raf-1 kinase kinase activity were identified after anion-exchange chromatography of cell lysates, and two of these were activated by insulin. Further chromatographic characterization of these two peaks of insulin-activated kinase activity indicated that they contained three apparently distinct kinase activities. Two of these activities comigrated with immunoreactive extracellular signal-regulated kinases (ERK) 1 and 2 (mitogen-activated protein kinase) through three different chromatographic separations. Both ERK1 and ERK2 phosphorylated Raf-1 with reasonably high affinity (Km for ERK1 = 90 nM; Km for ERK2 = 120 nM), and produced similar, complex phosphopeptide maps; both kinases also phosphorylated myelin basic protein. The third kinase activity also phosphorylated Raf-1 and myelin basic protein but did not comigrate exactly with either immunoreactive ERK1 or ERK2. We conclude that two and possibly three insulin-activated Raf-1 kinase kinases are members of the ERK family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号