首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作者是澳大利亚著名昆虫学家,长期在东南亚农村工作,积累了宝贵经验。他在文中提出,害虫综合防治(IPM)的含义是综合害虫治理的方法以达到农业上的最大收益和持续发展,同时注意对环境有良好的影响。对小农户应提供确实可行的整套害虫治理方法,并开创他们能自行选择的机会;他们经过田间学校培训后可成为农作物管理专家,并对怎样防治害虫能作出有根据的抉择。与IPM有关的生物防治最近的发展包括:对害虫的准确鉴定、经生物工程处理和未处理过的生物杀虫药的应用、对转基因动植物的利用、及情报资料的收集。文章讨论了这些生物技术在东南亚地区水稻和蔬菜综合治理中的应用,以8及巴西大豆害虫和越南稻瘟病的治理,阐明通过农户、技术员和研究人员通力合作所获得的成绩对农业持续的发展起了主要的推动作用。  相似文献   

2.
P. A. C. Ooi 《BioControl》1996,41(3-4):375-385
Traditionally, rice farmers in Asia were thought to be unable to comprehend biological control because it was too esoteric. This perception was exacerbated by vested interest that prefers to maintain monopoly of information. Hence, between 1950 to 1990, the preferred method of extending technical information to farmers was to package them in “simplistic” messages. For example, prophylactic chemical control was a common approach of many extension systems in Asian economies during that period despite evidence from ecological studies to the contrary. In fact, the dogma that chemical control is equal to modern agriculture persists to this day in some countries. Such an approach often exaggerated yield loss figures to scare and justify use of chemical insecticides which eventually resulted in further yield losses. There has been increasing evidence that in tropical Asia, natural enemies are ubiquitous in rice fields and are responsible for keeping populations of rice herbivores in check. The rise of the brown planthopper as a serious pest was linked to regular use of insecticides. Outbreaks of this delphacid in tropical rice resulted from destruction of effective predators. With the help of biological control scientists, the FAO Intercountry Programme for Integrated Pest Control in South and Southeast Asia (ICP) presented evidence to the President of Indonesia in 1986 and secured a ban of 57 types of insecticides from rice fields. Promulgating legislative actions was a start and to sustain it an education programme to help farmers understand the importance of biological control was developed. This programme recognised that a traditional top-down process of instructing farmers would not help farmers and a non-formal education process of learning by experimenting and discovery was formulated. This approach emphasised the need for farmers to understand the rice ecosystem. Hence, rice fields became classrooms for farmers participating in the Farmer Field Schools. Farmers learned that not ail arthropods in the field are pests and to their surprise, most of the arthropods are “friendly“ insects. They discovered that these friendly insects eat herbivores. Using insecticide check and exclusion cage experiments, farmers learned of the adverse impact of insecticides and the impact of predators in keeping herbivore populations in check. The curriculum includes crop physiology, agronomy, health risks to insecticides and group dynamics. The principles of IPM emphasised in the Farmer Field Schools are: 1) Grow a healthy crop; 2) Visit fields regularly, preferably once a week to monitor field situation; 3) Understand and conserve natural enemies; 4) Farmers become experts in pest management. Adoption of this approach has led to a 60% drop in use of insecticides resulting in 13% increase in yield. Similar results were achieved in Vietnam and the Philippines. Facilitating farmers to understand biological control through field investigations is the key to successful implementation of Integrated Pest Management  相似文献   

3.
Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.  相似文献   

4.
试论拓宽生物防治范围,发展虫害可持续治理   总被引:1,自引:0,他引:1  
严毓骅 《昆虫学报》1998,41(-1):1-4
该文针对我国生物防治资源极其丰富和农民经济实力薄弱的特点,结合我国微孢子虫治蝗和苹果园植被多样化持续治理虫害的成果,论述了应如何发展和拓宽具有我国特色的害虫生物防治,进一步提高综合防治水平,促进农业可持续发展。  相似文献   

5.
Oebalus poecilus is the most serious insect pest of rice in many South American countries. Presently, control of O. poecilus is wholly by the application of monocrotophos and most farmers use insecticides. Tachinid parasitoids are possible components in an IPM programme and their spatio-temporal dynamics were investigated for the first time over four crop seasons.  相似文献   

6.
我国农业害虫综合防治研究现状与展望   总被引:9,自引:0,他引:9  
害虫综合防治作为农业生产的一项重要策略,在农业可持续发展中具有举足轻重的作用。近年来,针对我国害虫防治所存在的技术需求,科技部等部门先后通过973计划、863计划、科技支撑计划和农业行业专项等对重要害虫防治研究立项支持。通过这些项目的实施,我国建成了一支由国家和省级科研单位和大学组成的专业科研队伍和研究平台,对害虫监测预警技术、基于生物多样性保护利用的生态调控技术、害虫生物防治技术、化学防治技术、抗虫转基因作物利用技术等方面的研究取得了一系列的重要进展,研究建立了棉花、水稻、玉米、小麦和蔬菜等作物重要害虫的综合防治技术体系,并在农业生产中发挥了重要作用。以基因工程和信息技术为代表的第二次农业技术革命的到来,推动了害虫综合防治的理论发展,为害虫综合防治技术的广泛应用提供了新的机遇。地理信息系统、全球定位系统等信息技术和计算机网络技术的应用,提高了对害虫种群监测和预警的能力和水平,转基因抗虫作物的商业化种植等技术的应用显著增强了对害虫种群的区域性调控效率。针对产业结构调整和全球气候变化所带来的害虫新问题,进一步发展IPM新理论与新技术将成为我国农业昆虫学研究的重要方向之一。  相似文献   

7.
害虫生态调控的原理与方法   总被引:42,自引:2,他引:42  
戈峰 《生态学杂志》1998,17(2):38-42
害虫生态调控的原理与方法戈峰(中国科学院动物研究所农业虫鼠害综合治理国家重点实验室,北京100080)ThePrinciplesandMethodsofEcologicalRegulationandManagementofPests.GeFeng(I...  相似文献   

8.

Pest management on a global scale experienced a total revolution after World War II when synthetic organic compounds were in agriculture and public health. However, it soon became apparent that there were many limitations in the use of chemicals for pest management. In agriculture, problems of pest resurgence, secondary pest outbreaks, pest resistance and adverse effects of pesticides on the environment, including human poisoning and toxicity to other non-target organisms, led to the search for alternative approaches to the pest outbreak problem. The 1960s produced new ideas on integrated pest management (IPM) strategies, followed by intensification of the search for biological control agents, which could be incorporated into IPM programmes. New application technologies were developed in the 1970s and 1980s and ecological approaches to the pest problem were spearheaded in the developed world in the 1990s, with extensive studies focused on the whole ecosystem. Important advances in crop production have also taken place in Africa in this century, involving adoption of high yielding varieties, fertilizer application, intensification of crop protection approaches, less shifting cultivation and more mono-cropping systems. However, these advances have led to increasing pest problems which unless tackled imaginatively and intelligently, they could become the most important constraint in crop production in the present millennium. Africa has entered the current millennium with relatively underdeveloped agriculture on a global scale and little investment in research on new pest management technologies that could be used to reduce crop losses. We are still highly dependent on pesticides for pest management. Therefore, the greatest challenges in agriculture in Africa will be the switch from a pesticide based mode of reducing losses due to pests to one that is ecosystem based, making use of insect management techniques which are ecologically and economically sound. Specifically, some of the major challenges in pest management in agriculture in Africa include; (i) reducing the dependence on pesticides, thus avoiding the limitations observed in the past 50 years; (ii) overcoming ignorance of the pest species and their associated community of parasites and predators which has dire consequences on the whole ecosystem; (iii) keeping out exotic pests, which in this millennium have had a devastating blow on the production of some crops and (iv) developing indigenous technologies for pest management (IPM, biocontrol, etc.) and making available to farmers materials for pest management which are affordable, safe, effective and environmentally friendly (e.g. microbial, botanicals, pheromones, genetically engineered products etc.). Both legislative and quarantine measures will have a significant role to play in pest management in the next millennium, but only when practised on a wider geographical area. Information technology (IT) will affect the way we acquire and make use of pest management strategies. Africa is therefore faced with the challenge of building up and improving its infrastructure and expertise on IT if it is to benefit pest management on the continent.  相似文献   

9.
Genetically engineered (GE) papaya was developed in the 1990s to improve the livelihoods of small scale farmers in Thailand. Yet these farmers have been excluded from the discourse around its deregulation and deployment. While elite stakeholders continue to debate in Bangkok, little is known about small scale farmers' understanding of biotechnology, their perceptions of the technology and whether or not they are likely to be adopters if it became available. In this case study, I report on farmer knowledge of agricultural biotechnology and genetically engineered papaya in northeast Thailand. Forty farmers in four villages were surveyed with regard to their knowledge and perceptions of GE papaya. A qualitative grounded theory approach was employed to understand their responses, from which three themes emerged: progress, power and prevarication. From these themes, the decision-making process of farmers seems to be dominated by their existing local knowledge and their interest in progressing their economic status. The responses of small-scale Isaan farmers provide a new perspective on the debate over GE virus-resistant papaya in Thailand. Based on the results of this study, we can conclude that this small subset of Thai papaya growers perceive GE virus-resistant papaya as a compatible innovation that is likely to be adopted by Thai farmers if it becomes available.  相似文献   

10.
The Asian rice gall midge, Orseolia oryzae Wood-Mason (Cecidomyiidae: Diptera) is a serious pest of wet season rice in South and Southeast Asia. Due to internal feeding habit and presence of biotypes of the pest, the most feasible way to control is breeding varieties resistant against multiple biotypes through marker-assisted breeding (MAB). But very few versatile co-dominant markers linked to the gall midge resistance genes are available. We used a set of F9 recombinant inbred lines (RILs) of the cross TN1/PTB10 and identified microsatellite markers for the gall midge resistance gene in cv. PTB10 on short arm of rice chromosome 8. Markers RM22550 and RM547 flank the gene at a distance of 0.9 and 1.9 cM, respectively. Amplification of the markers in gall midge resistant and susceptible cultivars showed that these markers can be successfully used in MAB for development of gall midge resistant varieties.  相似文献   

11.
Cassava is attacked by a complex of arthropod pests across the tropical regions of the world where the crop is grown. Root yield losses have been recorded for several pests, including mites, mealybugs, whiteflies, hornworm, lacebugs, thrips and burrower bugs. Agronomic characteristics such as vegetative propagation, a long growth cycle, drought tolerance, staggered planting dates and intercropping contribute to the considerable diversity of pests that feed on the crop. The dynamics of cassava production are evolving as trends in the food, feed and industrial starch sector are leading to an increased demand for high quality starches. The resulting shift to larger scale production units, expansion of cultivated area and modifications in crop management combined with the effects of climate change, especially warmer temperatures and altered rainfall patterns, affect the occurrence and dynamics of arthropod pests in cassava agro ecosystems. Data is presented to describe the effects of temperature and dry seasons on key pest species. Whiteflies, mites and mealybugs register a suitability increase in the same areas in South America: Northeastern Brazil, Northern Argentina, South-Central Bolivia, and Southwest Peru. In Africa increases are projected in Southeast Africa and Madagascar. In Asia, regions with greater projected suitability for these pest species are Coastal India and Southeast Asia. Future trends and important criteria that will influence the severity and management of key pests are discussed.  相似文献   

12.
The use of mixtures of transgenic insecticidal seed and nontransgenic seed to provide an in-field refuge for susceptible insects in insect-resistance-management (IRM) plans has been considered for at least two decades. However, the U.S. Environmental Protection Agency has only recently authorized the practice. This commentary explores issues that regulators, industry, and other stakeholders should consider as the use of biotechnology increases and seed mixtures are implemented as a major tactic for IRM. We discuss how block refuges and seed mixtures in transgenic insecticidal corn, Zea mays L., production will influence integrated pest management (IPM) and the evolution of pest resistance. We conclude that seed mixtures will make pest monitoring more difficult and that seed mixtures may make IRM riskier because of larval behavior and greater adoption of insecticidal corn. Conversely, block refuges present a different suite of risks because of adult pest behavior and the lower compliance with IRM rules expected from farmers. It is likely that secondary pests not targeted by the insecticidal corn as well as natural enemies will respond differently to block refuges and seed mixtures.  相似文献   

13.
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is one of the most damaging insect pests globally, causing estimated global economic losses of over 3 billion US dollars annually. Crops most affected include cotton, tomato, soybean, grain crops such as corn and sorghum, chickpea and other pulses. Adults of this species possess strong migratory abilities (>2000 km), high fecundity and rapid reproductive rates; completing 4–6 generations per year in most cropping regions. Furthermore, the larvae are polyphagous, with a wide and diverse host range and possess the ability to enter diapause in order to survive adverse climatic conditions. At present, it is distributed across most of Oceania, Asia, Africa and southern Europe and has recently spread to South America. Various control measures have been trialled or proposed for the treatment of this pest, including synthetic insecticides, phytopesticides, microbial pesticides, macro-biocontrol agents (both parasitoids and predators) and the development of genetically modified crops (e.g. Bt cotton). Successful control necessitates the use of an integrated pest management (IPM) approach, wherein biological, chemical and physical control measures are combined for the greatest control efficacy.  相似文献   

14.
Resistance to brown planthopper in rice cultivar ARC 10550 was found to be governed by a single recessive gene which was designatedbph 5. It conveys resistance to brown planthopper populations in South Asia but not to the populations in East and Southeast Asia. This gene segregated independently of four other known genes for brown planthopper resistance. It should be possible to combine this gene with any of the other four genes to develop rice cultivars with a broad spectrum of resistance.  相似文献   

15.
Rice tungro disease (RTD), caused by the co-infection of rice tungro bacilliform virus (RTBV) and rice tungro spherical virus, is one of the most important viral diseases of rice in South and Southeast Asia. The disease remains one of the major threats to sustainable rice production in many countries. The lack of resistance genes to RTBV—the causal agent of tungro disease—makes it even more difficult to manage RTD. In this review, we summarize previous and current research efforts to genetically engineer rice in order to increase the crop’s resistance to tungro disease, including the use of pathogen-derived resistance and of host genes that confer RTD resistance and/or that restrict feeding by the insect vector. The prospects of developing rice cultivars with durable resistance to RTD are also discussed.  相似文献   

16.
South China (SC) was a region with mixed rice–millet farming during the Middle Neolithic period and was also suggested to be the homeland of Tai-Kadai (TK)-speaking people. However, the formations of inland TK-speaking people and southwestern Hans are far from clear due to very few studies on this subject. Here, we reveal the spatiotemporally demographic history of SC by analyzing newly-generated genome-wide SNP data of 115 modern southwestern individuals and find that inland TK-speaking Dongs and Bouyeis have a close genomic affinity to coastal TK/Austronesian (AN)-speaking people and Neolithic Yangtze River basin (YZRB) farmers, while southwestern Hans and TK-speaking Gelaos possess a close genomic affinity to Neolithic Yellow River basin (YRB) farmers. Genetic differentiations are identified among TK people from SC and Southeast Asia, and between northern and southern inland Chinese TK people, in which the identified shared genetic ancestry between TK and AN people highlights a common origin of AN/TK groups. Conclusively, our findings indicate that millet farmers deriving from the YRB and rice farmers deriving from the YZRB substantially contribute to the present-day inland TK speakers and southwestern Hans via a two-way admixture scenario of bi-directional gene-flow events, which facilitates the formation of a modern two-way genetic admixture profile.  相似文献   

17.
本文以中季稻区稻田主要害虫稻飞虱、稻纵卷叶螟和捕食天敌蜘蛛的田间系统调查资料为基础,以害虫—天敌—农药系统为研究对象,应用害虫管理系统工程的原理,处理害虫、捕食天敌与农药三者之间的关系。建立了稻纵叶螟—蜘蛛—甲胺磷和稻飞虱—蜘蛛—甲胺磷两系统优化管理模型,绘制了它们的优化反馈控制策略图,利用微机对系统进行最优监控。使用时输入当前田间害虫与天敌数量,就可对系统作出即时的预测和最优决策。该策略确立的控制害虫的最优性能指标,是使害虫对农作物的为害所造成的损失与防治费用之和最小,并且使害虫和天敌的数量处于系统平衡状态。文中比较分析了该策略与基于经济阈值的常规害虫管理策略,指出了新策略在害虫综合治理中对天敌数量进行控制和管理的作用及其意义。  相似文献   

18.
Abstract Investigations on the pest-natural enemy-insecticide system, including rice leaf roller-spider-tamaron and planthopper-spider-tamaron system, were carried out in the paddy fields in middle season rice cropping region. The relationship among insect pest, natural enemy and insecticide were studied based on the principle of the pest management system engineering. The optimal management models of the two systems were developed. Their diagrams of optimal feedback control strategy were contoured for computer monitoring of the pest-natural enemy-insecticide system. The population densities of pest and natural enemy in the future could be forecasted and the optimal strategy could be made when the current field densities of pest and natural enemy were input into the computer. The optimal performance index, which is a combination of the total cost of using the chemical and the total cost of pest damage to crops, for pest control is minimized. The objective of the system management is to drive the state of the system towards a beneficial equilibrium of the system generally. A comparison of the new IPM strategy with the ordinary strategy based on a single economic threshold is conducted in this paper. The optimal control strategies suggest that both pest and natural enemy populations should be controlled in the integrated pest management.  相似文献   

19.
The melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), is widespread agricultural pest, and it is known to have the potential to establish invasive populations in various tropical and subtropical areas. Despite the economic risk associated with a putative stable presence of this fly, the population genetics of this pest have remained relatively unexplored in Asia, the main area for distribution of this pest. The goals for this study were to employ nuclear markers to examine geographic collections for population genetic structure and quantify the extent of gene flow within these Southeast Asian and Chinese populations. To achieve these goals, we used 12 polymorphic microsatellite markers. A low level of genetic diversity was found among collections from China and higher levels were seen in Southeast Asia collections. Three genetically distinct groups, Southeast Asia, southwest China, and southeast China, were recovered by Bayesian model-based clustering methods, the phylogenetic reconstruction and the principal coordinate analysis. The Mantel test clearly shows geographical distance contributed in the genetic structuring of B. cucurbitae's populations. No recent bottlenecks for any of the populations examined. The results of clustering, migration analyses, and Mantel test, strongly suggest that the regional structure observed may be due to geographical factors such as mountains, rivers, and islands. We found a high rate of migration in some sites from the southwest China region (cluster 1) and the southeast China region (cluster 2), suggesting that China-Guangdong-Guangzhou (GZ) may be the center of melon fruit fly in the southeast China region.  相似文献   

20.
The genetic differentiation of nuclear, mitochondrial (mt) and chloroplast (cp) genomes was investigated by Southern and PCR analysis using 75 varieties of cultivated rice ( Oryza sativa L.) and 118 strains of common wild rice (CWR, Oryza rufipogon Griff.) from ten countries of Asia. The distinguishing differences between the Indica and Japonica cultivars were detected both in the nuclear genome and the cytoplasmic genome, confirming that the Indica-Japonica differentiation is of major importance for the three different classes of genome in cultivated rice. This differentiation was also detected in common wild rice with some differences among the genome compartments and the various regions. For nuclear DNA variation, both Indica-like and Japonica-like types were observed in the Chinese CWR, with the latter more-frequent than the former. No Japonica-like type was found in South Asia, and only two strains of the Japonica-like type were detected in Southeast Asia, thus the Indica-like type is the major type among South and Southeast Asian CWR. For mtDNA, only a few strains of the Japonica-like type were detected in CWR. For cpDNA, the Japonica type was predominant among the CWR strains from China, Bangladesh and Burma, while the Indica type was predominant among the CWR strains from Thailand, Malaysia, Cambodia and Sri Lanka, and both types were found in similar frequencies among the Indian CWR. Altogether, however, the degree of Indica-Japonica differentiation in common wild rice was much-less important than that in cultivated rice. Cluster analyses for nuclear and mitochondrial DNA variation revealed that some CWR strains showed large genetic distances from cultivated rice and formed clusters distinct from cultivated rice. Coincidence in the genetic differentiation between the three different classes of genome was much higher in cultivated rice than in CWR. Among the 75 cultivars, about 3/4 entries were "homoeotype" showing congruent results for nuclear, mt and cpDNA regarding the Indica-Japonica differentiation. In CWR, the proportions of homoeotypes were 5.7%, 15% and 48.8% in China, South Asia and Southeast Asia, respectively. Based on the average genetic distance among all the strains of CWR and cultivated rice for nuclear and mitochondrial genomes, the variability of the nuclear genome was found to be higher than that of the mitochondrial genome. The global pattern based on all genomes shows much-more diversification in CWR than that in cultivated rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号