首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Spatial variation in biodiversity is one of the key pieces of information for the delimitation and prioritisation of protected areas. This information is especially important when the protected area includes different climatic and habitat conditions and communities, such as those along elevational gradients. Here we test whether the megadiverse communities of spiders along an elevational gradient change according to two diversity models – a monotonic decrease or a hump-shaped pattern in species richness. We also measure compositional variation along and within elevations, and test the role of the preference of microhabitat (vegetation strata) and the functional (guild) structure of species in the changes. We sampled multiple spider communities using standardised and optimised sampling in three forest types, each at a different elevation along a climatic gradient. The elevational transects were at increasing horizontal distances (between 0.1 and 175 km) in the Udzungwa Mountains, Eastern Arc Mountains, Tanzania. The number of species was similar between plots and forest types, and therefore the pattern did not match either diversity model. However, species composition changed significantly with a gradual change along elevations. Although the number of species per microhabitat and guild also remained similar across elevations, the number of individuals varied, e.g. at higher elevations low canopy vegetation was inhabited by more spiders, and the spiders belonging to guilds that typically use this microhabitat were more abundant. Our findings reflex the complex effects of habitat-microhabitat interactions on spider communities at the individual, species and guild levels. If we aim to understand and conserve some of the most diverse communities in the world, researchers and managers may need to place more attention to small scale and microhabitat characteristics upon which communities depend.  相似文献   

2.
海南岛霸王岭不同热带森林类型的种-个体关系   总被引:16,自引:1,他引:16       下载免费PDF全文
 比较分析了海南岛霸王岭自然保护区核心区热带低山雨林、山地雨林、云雾林、山地矮林等4种热带森林类型中不同大小径级树木的物种—个体关系。结果表明:各种植被类型中物种数与个体数对数成线性关系是一种普遍现象,且不受调查树木的径木级影响。在相同个体数的条件下,累积物种数随海拔增高而逐渐减少,也即物种数由热带低山雨林、山地雨林、云雾林到热带山地矮林逐渐减少。对于各种植被类型的种—多度关系,单个体、双个体的物种有相当高的比例,其后一般依个体数的增加,而逐渐降低物种的出现频率,呈典型的倒J型曲线,而且这一比例随树木径级的增加而增加。  相似文献   

3.
4.
    
Plants evolved in response to climatic conditions, which shaped their geographic distribution, functional traits and genetic composition. In the face of climatic changes, plants have to react by either genetic adaptation, phenotypic plasticity or geographic range shift. Their reaction potential depends on their phenotypic and genetic variability which can be evaluated through regional scale trait estimates, however, little is known here about tropical African plants. To start filling this gap of knowledge, the aim of this study was to estimate the phenotypic variability in a widespread perennial herb from the understorey of tropical African rainforests: Sarcophrynium prionogonium (Marantaceae). We surveyed 211 individuals from eight populations distributed across four sites in Cameroon covering largely the climatic range of the study species. Fourteen key functional traits were measured monthly for 18 months (2013–2014). Individuals of the study species persisted under a wide range of environmental conditions and there was considerable intraspecific variability within and across populations. Still, plant vegetative growth decreased with dryness. Productivity was positively related to a combination of high temperatures and precipitation and under these favourable conditions strongly shaped by light. Seasonal patterns of flower and fruit development were strongly associated with seasonal rainfall. Thus, the predicted increased dryness in tropical Africa might be disadvantageous for the study species. In the past, plants reacted to such aridification tendencies (e.g. during the Pleistocene glacial cycles) by retracting to moist refugia. The current climatic changes, however, being much faster and larger might provide new challenges.  相似文献   

5.
The aim of our study was to compare the shrew community diversity and structure in gradients of tropical forest degradation and restoration. Four plots within each of six habitats of the Ziama Biosphere Reserve were surveyed, including primary forest, secondary forest, cultivated fields, recently (less than 3 years) abandoned fields, young (10–12 years) forest restoration plots, and old (34 years) restoration plots. From August to November 2003, we pitfall-trapped 2,509 shrews representing 11 species. Shrew species richness and composition was similar in the six habitat surveyed, while shrew species abundance varied between habitats. Canopy height and cover, density of stems and trees and understorey density were shown to constitute important parameters influencing the abundance of several shrew species. After clear-cutting, restoration of key attributes of the forest vegetation structure was possible in 10–34 years, either by natural regeneration or by planting of seedlings. The relative abundance of most shrew species was similar between restoring forest (i.e., young restoration plots or fallows) and primary forest. Considering the advantages and disadvantages of these two methods of forest restoration, one of the most suitable management practices to restore forest while preserving shrew biodiversity could be to perform an alternation of native seedling plantation lines and fallows.  相似文献   

6.
Retuerto  Rubén  Carballeira  Alejo 《Plant Ecology》2004,170(2):185-202
We characterised the climatic behaviour of 53 woody species in terms of the climatic factors that play the main role in controlling species distribution in the study area. Floristic and climatic data were obtained from 150 stands in sites under climatic control (i.e. eu-climatopes). The sampling strategy used allowed a reliable match between floristic and climatic observations. Different methods of frequency analysis and goodness-of-fit tests were used to identify associations between species occurrence and climatic characteristics. The species' responses were summarised by statistics describing ecological preferences and amplitudes, and species were grouped accordingly. A Gaussian response model was fitted to the abundance data along the main climatic gradients for selected species and response surfaces were derived by spatial analysis for a set of indicator species. Frequency analysis methods detected 42 indicator taxa for the Baudiere's Qe drought index, and lower numbers, 34 and 22, respectively, for the mean minimum coldest-month temperature and the daily temperature range in the coldest month. Goodness-of-fit tests revealed a lower number of ecological profiles with statistically significant deviations from equidistribution. We discuss the relative performance of the different methods and suggest that the combined use of statistical tests and frequency analyses may improve estimation of the environmental requirements of species. We also recommend using the species' responses to key environmental factors as reliable criteria in the definition of plant functional types. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
A quantitative study is presented of the tropical deciduous forest located in the Sierra de La Laguna in the southern part of the peninsula of Baja California, Mexico with data on structure, species composition, diversity, density, and abundance of perennial plants.4 study plots were selected to represent the predominant geomorphologic units, and to include topographic and climatic variations reflected by the distribution of this vegetation on the lowlands of slopes facing the Gulf of California and the Pacific Ocean.25 families containing 67 perennial species were found on the lowlands, with Leguminosae, Cactaceae, and Euphorbiaceae best represented. A high family diversity was found in the plots, but there was a low number of species per family. Dissimilarities between sites were found to be reflected significantly in growth-form abundances as well as in structural features and species diversity. Results show that the xeric environment, the low number of species, and the high incidence of dominant shrub species confer the vegetation of the lowlands simpler structural traits than those described for other tropical dry forests.  相似文献   

8.
Abstract. Comparisons of the positions of species on Grimes'C-S-R triangular ordination model with their responses to individual environmental gradients indicates that the C-S-R model does not necessarily predict species ecological behaviour. The importance of the stress, productivity and disturbance gradients relative to other environmental gradients needs to be determined. In studies of species behaviour along a biomass/productivity gradient the collective vegetation property, biomass, has been confused with the environmental factor, fertility. Patterns of responses to biomass gradients e.g. Keddy's centrifugal model, should be examined in a two-dimensional environmental space to avoid such confounding effects. Assumptions regarding the shapes of species responses to environmental gradients remain untested. A recent model of species response functions to environmental gradients suggested that skewed responses curves show a pattern in the direction of the skew, always with the tail towards the presumed most mesic position on the gradient. Further evidence is presented to support this model for a temperature gradient in eucalypt forest in south-eastern Australia. 21 out of 24 species tested conform to the model.  相似文献   

9.
    
  相似文献   

10.
The impact of human disturbance on colonisation dynamics of vascular epiphytes is poorly known. We studied abundance, diversity and floristic composition of epiphyte seedling establishing on isolated and adjacent forest trees in a tropical montane landscape. All vascular epiphytes were removed from plots on the trunk bases of Piptocoma discolor. Newly established epiphyte seedlings were recorded after 2 years, and their survival after another year. Seedling density, total richness at family and genus level, and the number of families and genera per plot were significantly reduced on isolated trees relative to forest trees. Seedling assemblages on trunks of forest trees were dominated by hygrophytic understorey ferns, those on isolated trees by xerotolerant canopy taxa. Colonisation probability on isolated trees was significantly higher for plots closer to forest but not for plots with greater canopy or bryophyte cover. Seedling mortality on isolated trees was significantly higher for mesophytic than for xerotolerant taxa. Our results show that altered recruitment can explain the long-term impoverishment of post-juvenile epiphyte assemblages on isolated remnant trees. We attribute these changes to a combination of dispersal constraints and the harsher microclimate documented by measurements of temperature and humidity. Although isolated trees in anthropogenic landscapes are considered key structures for the maintenance of forest biodiversity in many aspects, our results show that their value for the conservation of epiphytes can be limited. We suggest that abiotic seedling requirements will increasingly constitute a bottleneck for the persistence of vascular epiphytes in the face of ongoing habitat alteration and atmospheric warming.  相似文献   

11.
    
  1. We developed a biogeographical regionalization of Angolan mammals based on data collected before major declines occurred during the civil war (1975–2002). In terms of its biodiversity, Angola is one of the least known of all African countries.
  2. We used 9880 grid records of 140 species (rodents, ungulates and carnivores) collected mainly in 1930–80, at a quarter degree cell resolution. Biogeographical regions were identified by using cluster analysis, based on βsim dissimilarity matrices and a hierarchical classification using Ward's method. An indicator value analysis was used to identify species characterizing each region. Distance‐based redundancy analysis was used to investigate the environmental correlates of mammalian assemblages.
  3. Four biogeographical subdivisions emerged from ungulate distributions, while rodent and carnivore data were largely uninformative. In the north, the Zaire‐Lunda‐Cuanza region was mainly characterized by ungulate species associated with Congolian forests. In the south, the Namibe and Cunene‐Cuando Cubango regions were mainly characterized by ungulates widespread in south‐western and southern Africa. In between these regions, the Central Plateau region was mainly characterized by a few widespread ungulate species that are relatively common in dense miombo woodlands.
  4. Biogeographical patterns were significantly associated with a dominant north–south gradient of decreasing humidity and increasing temperature, and with a concurrent gradient from dense forests and woodlands to open savannas, grasslands and deserts.
  5. The biogeographical regions we identified in Angola were largely consistent with other bioregionalizations developed using various taxonomic groups at larger spatial scales. Biogeographical patterns reflected the southward penetration of Congolian forest species in the north, and the northward penetration of southern African desert/grassland species in the south‐west and of open savanna species in the south. These processes seem to be controlled by the distribution of vegetation types, which in turn are associated with climatic gradients and soil types. The stronger patterns observed for ungulates than for other mammals may reflect the close association of ungulates to specific vegetation types.
  相似文献   

12.
Phytoliths are microscopic amorphous silicon dioxide (SiO2.H2O) particles occurring in leaves, internodes, glumes and inflorescence within all members of the grass family Poaceae. Phytoliths of grasses are of particular interest, as they possess morphological features which have encouraged many investigators to identify these plants from which fossil phytoliths might have originated. The present study is a step towards preparing a systematic inventory of grass phytoliths in western tropical Africa. Morphology and dimensions of phytoliths from 66 species belonging to the tribe Paniceae have been studied. Four shape categories of lobate phytoliths have been determined in leaf blade spodograms: bilobate, nodular bilobate, polylobate, quadra-lobate. Bilobate shaped phytoliths are frequently represented in all genera of Paniceae. 13 groups of lobate phytoliths have been distinguished based on significant morphological criteria like shape of outer margins, shape of the shank and number of lobes. A size category system of lobate phytolith dimensions (length, width; length and width of shanks) has been developed by the analysis of average, minimum and maximum values of these dimensions. Application of the size category system results on classifying the major groups into 25 subgroups. The study proves that size and shape can be used to assign some of the lobate phytoliths to their respective genera. Some rarely produced lobate shapes like nodular bilobate and polylobate types could be used together on assemblage basis as markers for definite genera in the tribe Paniceae, e.g. Brachiaria, Panicum, Pennisetum and Setaria. Also, bilobate phytoliths with concave margins have been recorded in five species. Bilobate phytoliths with flattened and convex margins and quadra-lobate shapes are produced by almost all species which therefore resulted in an inconsistent and indefinite relationship with the taxa that produce them. The study shows a correlation between width dimensions of bilobate shapes and their shanks. Greater width dimensions usually connected to thick shanks while short ones are attached to thin shanks. A spectrum on percentages of species producing each type of lobate phytolith has been designed. It is recommended that such spectrum should be carried out for all tribes of Poaceae on phyto-geographical basis which might eliminate the effect of redundancy and multiplicity on the classification of grass phytoliths.  相似文献   

13.
Engelbrecht BM  Kursar TA 《Oecologia》2003,136(3):383-393
Quantifying plant drought resistance is important for understanding plant species' association to microhabitats with different soil moisture availability and their distribution along rainfall gradients, as well as for understanding the role of underlying morphological and physiological mechanisms. The effect of dry season drought on survival and leaf-area change of first year seedlings of 28 species of co-occurring woody tropical plants was experimentally quantified in the understory of a tropical moist forest. The seedlings were subjected to a drought or an irrigation treatment in the forest for 22 weeks during the dry season. Drought decreased survival and growth (assessed as leaf-area change) in almost all of the species. Both survival and leaf-area change in the dry treatment ranged fairly evenly from 0% to about 100% of that in the irrigated treatment. In 43% of the species the difference between treatments in survival was not significant even after 22 weeks. In contrast, only three species showed no significant effect of drought on leaf-area change. The effects of drought on species' survival and growth were not correlated with each other, reflecting different strategies in response to drought. Seedling size at the onset of the dry season had no significant effect on species' drought response. Our study is the first to comparatively assess seedling drought resistance in the habitat for a large number of tropical species, and underlines the importance of drought for plant population dynamics in tropical forests.  相似文献   

14.
Species composition and herbage dynamics in relation to rainfall variability and cattle grazing were studied in permanently protected, grazed, and temporarily fenced treatments on three sites in a seasonally dry tropical savanna. Permanently protected sites, established between 1979 and 1984, were 55–79% similar with each other in species composition, and 14–25% similar with grazed sites during the period 1986–1988. Similarity among grazed sites was only 36–43%. Number of species was greater in the grazed treatment than in the permanently protected treatment. The percentages of annual grasses and non-leguminous forbs were greater in grazed savanna than in permanently protected savanna. Species diversity was higher in grazed savanna than in the corresponding permanently protected savanna. Species the two annual cycles studied, peak live shoot biomass was 614 g m-2 in permanently protected savanna, 109 g m-2 in grazed savanna, and 724 g m-2 in temporarily fenced savanna. Live shoot biomass in temporarily fenced savanna was 18 to 44% greater than in permanently protected savanna. Peak canopy biomass ranged from 342 to 700 g m-2 in permanently protected savanna. It was related with total rainy season rainfall, and was particularly sensitive to late rainy season rainfall. On the other hand, peak canopy biomass in grazed savanna ranged from 59 to 169 g m-2 and was related to grazing intensity rather than either total rainy season rainfall or late rainy season rainfall. Coefficient of variation of green biomass in permanently protected savanna was related with rainfall variability indicating it to be a pulsed system which responds quickly to rainfall events. Biomass of woody species ranged from 2466 to 5298 g m-2 in permanently protected savanna and from 744 to 1433 g m–2 in the grazed savanna. Green foliage biomass was 3.7 to 6.4% of the woody biomass in permanently protected and 5.6 to 5.9% in grazed savanna, and supplements substantially the fodder resource during the dry periods of the year.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Abstract. Floristic data from paired roadside-paddock analyses from grassland in central Queensland, Australia, were ordinated. The mean direction of the vectors between these pairs was almost perfectly aligned with the indirect gradient represented by the first axis of Non-metric Multi-dimensional Scaling. It confirms anecdotal evidence of a trend from infrequently grazed roadsides to constantly grazed paddocks. The increasing abundance of annual herbs and grasses along this putative gradient is consistent with documented trends from elsewhere in the world. The response patterns of individual species along the disturbance gradient is consistent with ecological theory predicting unimodal peaks in abundance along physical environmental gradients. The ancestral perennial dominants of the grasslands, Dichanthium sericeum and D. queenslandicum, exhibited a declining response to grazing disturbance. Even the generally unpalatable perennial grass Aristida leptopoda declined considerably in the upper segments of the grazing disturbance gradient. A suite of herbaceous trailing legumes had peaks in their abundance near the middle of the grazing disturbance gradient, trends that can be readily explained by the combination of their palatability and intolerance to competition from tall perennial grasses. Several species including the noxious exotic herb Parthenium hysterophorus showed increasing abundance along the grazing disturbance gradient. The methodology may have application as a rapid method of assessing disturbance impacts elsewhere, and is most suited where a management differential between paired plots can be reliably generalized and where the physical environment is relatively monotonous.  相似文献   

16.
17.
  总被引:10,自引:0,他引:10  
A reformulation of the continuum concept is presented after considering the implications of the community/continuum controversy and current niche theory. Community is a spatial concept dependent on landscape pattern while the continuum is an environmental concept referring to an abstract space. When applying niche theory to plants, the mechanisms of competition are ill-defined and the assumption of bell-shaped response curves for species unrealistic.Eight testable propositions on the pattern of response of vegetation to environmental gradients are presented 1. Environmental gradients are of two types. a) resource gradients or b) direct physiological gradients. 2. The fundamental niche response of species to resource gradients is a series of similar nested response curves. 3. The fundamental niche response of species to direct gradients is a series of separate, independent, overlapping response curves. 4. Species fundamental response curves are such that they have a relative performance advantage in some part of the environmental space. 5. The shape of the realized niche is variable even bimodal but predictable from the fundamental response given the other species present. Propositions 6–8 describe the response shapes of emergent community properties to environmental gradient; species richness is bimodal, dominance trimodal and standing crop unimodal. Detailed comparisons of these propositions are made with the alternative theories of Ellenberg, Gauch and Whittaker, Grime, and Tilman. These theories are incomplete lacking several generally accepted properties of plants and vegetation.  相似文献   

18.
    
《Journal of Asia》2020,23(3):646-652
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a global forest pest, has a potential to damage forests in South Korea, requiring an effective tool for evaluating its potential distribution. This study aimed to evaluate the spatial distribution of A. glabripennis in South Korea by simultaneously considering climate and host plants. Climatic suitability was firstly evaluated using a CLIMEX model; then, it was combined with the areal distribution of host plants using a simple mathematical formulation. We finally projected the spatial distribution of A. glabripennis onto the map of administrative districts to identify hazardous areas to watch. As a result, the developed model predicted that over 40% of areas in South Korea could be exposed to A. glabripennis damage, and most of them were located in mountainous areas with abundant host plants. In addition, climatic suitability was higher in coastal areas, which was different than a previous record of A. glabripennis occurrence, while the prediction by a comprehensive model was consistent with the record. In conclusion, the model including both climate and host plant occurrence was more reliable than the model which only included climate, and could provide useful data for determining areas for monitoring and control.  相似文献   

19.
A pollen record from a crater lake (Lake Tilla, 10°23N, 12°08E, c. 700 m asl) in the Sudanian zone of northeast Nigeria provides evidence for the persistence of woodland savanna throughout the Holocene. Wetter conditions from c. 10,000 B.P. to c. 6800 B.P. enabled the establishment of a dense Guinean savanna, though the occurrence and rapid spread of the montane elementOlea hochstetteri indicates cool climatic conditions prior to c. 8800 B.P. Patches of closed dry forest may have existed, but never completely displaced the savanna vegetation. Grass fires were frequent throughout the Holocene and were probably important in promoting the open character of the vegetation. From c. 6800 B.P. onwards a gradual floristic change from a Guinean to a Sudano-Guinean savanna and a lowering of lake levels point to drier environmental conditions, which intensified around 3700 B.P. Human impact might have caused increasing sedimentation rates from c. 2500 B.P. onwards. The pollen diagram of Lake Tilla reflects a history of the savanna which appears to have been primarily controlled by climatic changes. The lack of unambiguous pollen indicators might be the reason why human activities remain palynologically hidden even for the late Holocene.  相似文献   

20.
Forest light and its influence on habitat selection   总被引:4,自引:0,他引:4  
Théry  Marc 《Plant Ecology》2001,153(1-2):251-261
Light filtered through the forest canopy is the most variable physical factor in tropical forests, both in space and time. Vegetation geometry, sun angle, and weather generate five light environments, which greatly differ in intensity and spectrum. Forest light spectra can directly affect photosynthesis, plant morphogenesis, visual communication, and the effectiveness of plant-animal interactions. For animals, the apparent simplicity of five light environments is complicated by different types of contrast with the optical background which greatly modify the conspicuousness of visual signals. The purpose of this paper is to describe peculiarities of light in tropical forest, and to review the effects of light intensity and especially quality on plants and animals. Ecophysiological adaptations of plants to cope with contrasting light environments operate at daily, seasonal and life time-scales. Ambient light quality acts as a signal for both animals and plants, and consequences on plant growth, colour display, and signal design are examined. An analysis of the range of spectral parameters along a deforestation gradient is presented, testing if sites with more variation in light could support more species which are light-environment specialists. It is suggested that light quality measurement may be used to estimate the structural impact of forest exploitation, and that gives us the information necessary for a functional explanation of anthropogenic effects on tropical forest diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号