首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了加州Santa Monica海湾鳍足类的生态学.从1997-2007年乘船调查了277次,发现海狮(Zalophus californianus)是最常见的动物(89%,见到的次数为1393次),其次是港海豹(Phoca vitulina richardsi,8%,n=131)和北象海豹(Mirounga angustirostris,1%,n=15).在29%的遇见次数(观察到瓶海豚205次)中,发现海狮(偶尔也发现港海豹)与瓶鼻海豚集群(Tursiops truncatus);短喙真海豚(Delphinus delphis)与长喙真海豚(D.capensis)在53% 的遇见次数(遇见真海豚次数n=155)中,发现短喙真海豚(Delphinus delphis)与长喙真海豚(D.capensis)集群;一般在沿岸水域(离岸边距离<500 m)见到海狮和港海豹,但在整个海湾也能见到,表现出这两个物种对海底峡谷的偏爱.北象海豹仅见于近海,主要在海底峡谷附近. 经常看到海狮、港海豹和北象海豹游动(50%,n=728)、进行热调节(14%,n=205)、以及取食(3.2%,n=47),但几乎见不到有社会性活动(0.21%,n=3).  相似文献   

2.
3.
HARBOR SEAL TRACKING AND TELEMETRY BY SATELLITE   总被引:2,自引:0,他引:2  
We tested a satellite Platform Transmitter Terminal (PTT) in the laboratory (on a float and on captive seals) and on a free-ranging harbor seal in the Southern California Bight to investigate the utility of satellite telemetry in documenting seals'at-sea behavior and movements. We used records from a microprocessor-based time-depth recorder (TDR) to interpret location and diving records from the PTT. For the free-ranging harbor seal, we obtained at least one uplink during 70% (while the seal was at sea) to 82% (while she was ashore) of satellite passes and at least one location each day. Of 62 locations determined by Service Argos for the free-ranging seal, 20 were verified from TDR records to have been at sea; these indicated that the seal may have ranged up to 48 km from the haul-out site, although most locations were within 5 km. The accuracies of locations calculated when the seal was at sea (±15 km) were substantially less than when it was ashore (±1.5 km), thus limiting at-sea tracking of seals by satellite to rather gross movements. Fewer transmissions were detected and locations calculated when the seal was actively diving than when it was swimming near the surface as it departed from or returned to the haul-out site. Consequently, average dive durations indicated by the PTT were substantially shorter than those calculated from TDR records. Documentation of foraging areas and detailed at-sea movements using satellite technology may not be possible for pinnipeds unless PTT-transmission rates are increased substantially from the 1 per 45 set maximum rate now permitted by Service Argos.  相似文献   

4.
Salmonella enterica is a zoonotic pathogen that has been isolated from free-ranging marine mammals throughout the world, with animals in the Channel Islands of California (USA) showing the highest prevalence. The goal of this study was to determine prevalence, antimicrobial sensitivity and genetic similarity using pulsed-field gel electrophoresis (PFGE) of Salmonella in several non-domestic animal species on San Miguel and San Nicolas Islands. Fecal samples were collected from 90 California sea lion Zalophus californianus pups, 30 northern elephant seal Mirounga angustirostris pups and 87 western gulls Larus occidentalis in the Channel Islands and 59 adult male sea lions in Puget Sound, WA (USA). Salmonella were isolated, identified and serotyped, followed by antimicrobial susceptibility testing and PFGE. Of the California sea lion pups that were sampled on the islands, 21% (n = 19) were positive for Salmonella, whereas no adults males in Puget Sound were positive. Of the northern elephant seal pups sampled, 87% (n = 26) were harboring Salmonella. Only 9% (n = 8) of western gulls were shedding Salmonella, with one of these gulls harboring the only antimicrobial resistant isolate. The serotypes found in these animals were Enteritidis, Montevideo, Newport, Reading, and Saint Paul. The only serotype that showed variation on PFGE was Newport. The pinnipeds of the Channel Islands harbor Salmonella at a higher prevalence than pinnipeds from other geographic areas observed in previous studies. Researchers and veterinarians should exercise increased caution when working with these animals due to the zoonotic potential of Salmonella.  相似文献   

5.
Otostrongylus circumlitus (Railliet, 1899) from Pacific harbor seals (Phoca vitulina richardsi) and northern elephant seals (Mirounga angustirostris) were examined using morphological and molecular methods to determine whether northern elephant seals along the central California coast are infected by the same species of Otostrongylus as are Pacific harbor seals in the same area. Fixed nematodes were examined and measured using light microscopy. The polymerase chain reaction (PCR) was used to amplify and sequence the second internal transcribed spacer (ITS-2) and D3 expansion (26S) regions of ribosomal DNA of O. circumlitus from Pacific harbor and northern elephant seals. The ITS-2 region was also amplified from Parafilaroides sp. from the Pacific harbor seal, northern elephant seal, and California sea lion (Zalophus californianus) and used for restriction fragment length polymorphism (RFLP) analysis. Morphologically, it was not possible to distinguish O. circumlitus from Pacific harbor and northern elephant seals, and over a consensus length of 443 base pairs (bp) for ITS-2 and 321 bp for D3 the sequences of O. circumlitus from both hosts were identical. With the PCR-RFLP assay, it was possible to distinguish O. circumlitus from Parafilaroides sp. The results suggest that O. circumlitus is the same species in Pacific harbor and northern elephant seals, and molecular methods make it possible to distinguish this nematode from related nematodes.  相似文献   

6.
We report the detection and identification of Cryptosporidium and Giardia from 1 of 3 species of pinnipeds. Fecal samples were collected from Pacific harbor seal (Phoca vitulina richardsi), northern elephant seal (Mirounga angustirostris), and California sea lion (Zalophus californianus) in the northern California coastal area. By means of fluorescently labeled monoclonal antibodies, Cryptosporidium oocysts were detected in 3 samples from California sea lions, 1 of which also contained Giardia cysts. Oocysts of Cryptosporidium and cysts of Giardia were morphologically indistinguishable from oocysts of C. parvum and cysts of G. duodenalis from other animal origins. Oocysts and cysts were then purified using immunomagnetic separation techniques and identified by polymerase chain reaction (PCR), from which species-specific products were obtained. Sequence analysis revealed that the 452-bp and 358-bp PCR products of Cryptosporidium isolated from California sea lion had identities of 98% with sequences of their template fragments of C. parvum obtained from infected calves. Based on morphological, immunological, and genetic characterization, the isolates were identified as C. parvum and G. duodenalis, respectively. The findings suggested that California sea lions could serve as reservoirs in the environmental transmission of Cryptosporidium and Giardia.  相似文献   

7.
Spectral sensitivity was measured in air in the light adapted state in two harbor seals and a South American sea lion using a behavioral training technique. Increment thresholds were determined in a spectral range from 390 nm to 670 nm in a simultaneous two‐choice discrimination task. The spectral sensitivity curves show two maxima in sensitivity, one main peak with a maximum around 500 nm in the harbor seal and around 550 nm in the South American sea lion, and a second, smaller peak with a maximum in the range of 410 nm in both species. The broad shape and the position of the maximum of the spectral sensitivity curve of the harbor seals suggests that even under photopic conditions both rods and cones are contributing to the measurements since harbor seals possess only one cone type. The maximum sensitivity in the green part of the spectrum may indicate an adaptation to a specific underwater environment.  相似文献   

8.

Behavioral foraging differences are known to aid in food resource partitioning in pinniped communities, but it is not known whether skull biomechanical efficiency also contributes to dietary niche partitioning. We tested this hypothesis in a community of four sympatric species of pinnipeds that co-occur along the coast of Baja California: California sea lion (Zalophus californianus), northern elephant seal (Mirounga angustirostris), harbor seal (Phoca vitulina), and Guadalupe fur seal (Arctocephalus townsendi). We tested whether their preferred prey items differed in resistivity to puncture and whether those differences were linked to the mass of the muscles of mastication and the biomechanical efficiency with which they can puncture prey items. For each prey species, we measure resistivity to puncture using texture profile analysis. We found that M. angustirostris consumes the most resistant prey and that A. townsendi consumes the least resistant. We estimated physiological cross-sectional area of the muscles of mastication for each pinniped and found that the same pair of species respectively has the largest and smallest theoretical value of muscular force. Finally, we estimated the bite force that each pinniped species requires to puncture its prey by solving Euler-Lagrange equations based on biomechanical lever model parameters measured from 3D digital models of the skulls. We also found differences in efficiency between the species. These data allowed us to classify the three ecomorphological types. Type 1 features a hydrodynamic skull with relatively low mandibular forces, characteristic of pelagic carnivore feeders such as A. townsendi. Type 2, represented by Z. californianus and M. angustirostris (both opportunistic feeders), is characterized by broad insertion areas for the mandibular muscles and strong teeth, permitting these predators to vary the prey target species as a function of prey availability. Type 3 features a less robust skull and a lower muscle efficiency, characteristic of benthic feeders such as P. vitulina. This evidence indicates that biomechanical differences between the species contribute to dietary niche construction.

  相似文献   

9.
We investigated the impact of foraging location (nearshore vs offshore) and foraging latitude (high vs middle) on the carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen of northern fur seals (Callorhinus ursinus), harbor seals (Phoca vitulina), California sea lions (Zalophus californianus), and northern elephant seals (Mirounga angustirostris). Nearshore-foraging harbor seals from California had δ13C values 2.0‰ higher than female northern elephant seals foraging offshore at similar latitudes. Likewise, nearshore-foraging harbor seals from Alaska had values 1.7‰ higher than male northern fur seals, which forage offshore at high latitudes. Middle-latitude pinnipeds foraging in either the nearshore or offshore were 13C enriched by ∼1.0‰ over similar populations from high latitudes. Male northern elephant seals migrate between middle and high latitudes, but they had δ13C values similar to high-latitude, nearshore foragers. Female northern fur seal δ13C values were intermediate between those of high- and middle-latitude offshore foragers, reflecting their migration between high- and middle-latitude waters. The δ13C values of California sea lions were intermediate between nearshore- and offshore-foraging pinnipeds at middle latitudes, yet there was no observational support for the suggestion that they use offshore food webs. We suggest that their “intermediate” values reflect migration between highly productive and less-productive, nearshore ecosystems on the Pacific coasts of California and Mexico. The relative uniformity among all of these pinnipeds in δ15N values, which are strongly sensitive to trophic level, reveals that the carbon isotope patterns result from differences in the δ13C of organic carbon at the base of the food web, rather than differences in trophic structure, among these regions. Finally, the magnitude and direction of the observed nearshore-offshore and high-to middle-latitude differences in δ13C values suggest that these gradients may chiefly reflect differences in rates and magnitudes of phytoplankton production as well as the δ13C value of inorganic carbon available for photosynthesis, rather than the input of 13C-enriched macroalgal carbon to nearshore food webs. Received: 8 September 1998 / Accepted: 24 February 1999  相似文献   

10.
Physical environment and physiological characteristics of marine mammals potentially affect the duration and depth of diving. Härkönen (1987b) proposed a hypothesis that the harbor seal would gain maximum energy by foraging at intermediate depths. To investigate this hypothesis, we studied diving behavior of the Pacific harbor seal (Phoca vitulina ricbardii) during 1995 through 1997 in Monterey Bay, California. Dive depths (n = 13,063 dives) were recorded via time‐depth recorders. Approximately 80% of recorded dives were classified as square dives (type I), which typically were associated with foraging in pinnipeds. Approximately 11% of dives were V dives (type II; 1,402 dives), and the remainder (1,225 dives) were skewed dives (type III and IV). The deepest recorded dive was 481 m, while the greatest duration was 35.25 min. Body mass explained the variability of durations of long dives for females (95th percentile; D95♂=‐5.47 + 0.18 × (mass♀), r2= 0.91, 95% CI for slope = [0.08, 0.28], n= 5) and for males (D95♂=‐5.86 + 0.18 × (mass♀), r2= 0.83, 95% CI for slope = [0.12, 0.24], n= 11). The large proportion of variability in deep dives, however, was explained by body mass only for males (95th percentile; Z95♂=‐363.9 + 6.05 × (mass♀), r2= 0.83, 95% CI for slope = [3.93, 8.17], n= 11) and not for females (Z95,♂=?148.1 +3.11 × (mass♀), r2= 0.58, 95% CI for slope = [‐1.7, 7.9], n= 5, 95% CI for slope= [?1.7, 7.9]). Median depths of presumed foraging dives of harbor seals in the Monterey Bay area were between 5 and 100 m, which were within the range of the previously reported depths for other areas (< 100 m). Our findings generally supported Härkönen's hypothesis that harbor seals forage in the intermediate depth in their environment.  相似文献   

11.
Forty-two seals and sea lions found dead along the Oregon Coast were examined for parasites and associated pathology. Nematode infections of the lung and/or gastrointestinal tract were the primary cause of death in 5 of 42 animals examined. New distribution records were established for Pricetrema zalophi and Zalophotrema hepaticum. New host records include Z. hepaticum and Diphyllobothrium cordatum in the Steller's sea lion (Eumetopias jubatus); Nanophyetus salmincola in the California sea lion (Zalophus californianus); P. zalophi in the harbor seal (Phoca vitulina); and P. zalophi, Trigonocotyle sp. and Otostrongylus circumlitus in the northern elephant seal (Mirounga angustirostris).  相似文献   

12.
ABSTRACT Pinnipeds are major consumers in marine ecosystems, and understanding their energy budgets is essential to determining their role in food webs, particularly where there is competition with fisheries. Food consumption and energy expenditure have been evaluated in pinnipeds using different methods, but the use of heart rate to estimate energy expenditure is potentially a very powerful tool suited to the life history of these animals. We tested a procedure for the subcutaneous implantation of heart rate data loggers to determine whether heart rate could be recorded for ≥1 year in free-ranging pinnipeds, as it has been in birds. We implanted 3 captive California sea lions (Zalophus californianus) and 3 captive northern elephant seals (Mirounga angustirostris) with heart rate data loggers and monitored their recovery and behavior in a controlled environment. In both species, the implantation site allowed for excellent detection of the electrocardiogram, and we observed heart rate signatures characteristic of behaviors such as resting and diving. Although all 3 sea lions recovered well from the implantation surgery, all 3 elephant seals showed a substantial inflammatory response for unknown reasons, and we removed the implanted data loggers. Subcutaneous implantation of data loggers is a powerful technique to study physiology, energetics, and behavior in California sea lions, but more work is required to realize the potential of this technique in northern elephant seals.  相似文献   

13.
We compared the heart morphology of the small, deep-diving northern rockhopper penguin to the hearts of small, shallow-diving and large, deep-diving penguin species. The rockhopper penguin had a heart larger than expected for its body mass, and its heart weight/body weight was significantly greater than in the larger Adélie penguin. We found the rockhopper's right ventricle weight/heart weight to be significantly greater than this relationship in both the larger chinstrap and Adélie penguins. The relationship of the right to left ventricular weights in the rockhopper heart is not different to that of the large, deepest-diving emperor penguin. A larger heart in the rockhopper penguin might be related to its diving behavior and ecology if it contributes to diving efficiency during foraging by increasing lung perfusion during surface recovery. This would lead to decreased surface time. Accepted: 20 May 2000  相似文献   

14.
Diving animals offer a unique opportunity to study the importance of physiological constraint in their everyday behaviors. An important component of the physiological capability of any diving animal is its aerobic dive limit (ADL). The ADL has only been measured in a few species. The goal of this study was to estimate the aerobic dive limit from measurements of body oxygen stores and at sea metabolism. This calculated ADL (cADL) was then compared to measurements of diving behavior of individual animals of three species of otariids, the Antarctic fur seal, Arctocephalus gazella, the Australian sea lion, Neophoca cinerea, and the New Zealand sea lion, Phocarctos hookeri. Antarctic fur seals dove well within the cADL. In contrast, many individuals of both sea lion species exceeded the cADL, some by significant amounts. Australian sea lions typically dove 1.4 times longer than the cADL, while New Zealand sea lions on average dove 1.5 times longer than the cADL. The tendency to exceed the cADL was correlated with the dive pattern of individual animals. In both Antarctic Fur Seals and Australian sea lions, deeper diving females made longer dives that approached or exceeded the cADL (P<0.01, r(2)=0.54). Australian and New Zealand sea lions with longer bottom times also exceeded the cADL to a greater degree. The two sea lions forage on the benthos while the fur seals feed shallow in the water column. It appears that benthic foraging requires these animals to reach or exceed their aerobic dive limit.  相似文献   

15.
The winter/spring vertical distributions of polar cod, copepods, and ringed seal were monitored at a 230-m station in ice-covered Franklin Bay. In daytime, polar cod of all sizes (7–95 g) formed a dense aggregation in the deep inverse thermocline (160–230 m, −1.0 to 0°C). From December (polar night) to April (18-h daylight), small polar cod <25 g migrated into the isothermal cold intermediate layer (90–150 m, −1.4°C) at night to avoid visual predation by shallow-diving immature seals. By contrast, large polar cod (25–95 g), with large livers, remained below 180 m at all times, presumably to minimize predation by deep-diving mature seals. The diel vertical migration (DVM) of small polar cod was precisely synchronized with the light/dark cycle and its duration tracked the seasonal lengthening of the photoperiod. The DVM stopped in May coincident with the midnight sun and increased schooling and feeding. We propose that foraging interference and a limited prey supply in the deep aggregation drove the upward re-distribution of small polar cod at night. The bioluminescent copepod Metridia longa could have provided the light needed by polar cod to feed on copepods in the deep aphotic layers.  相似文献   

16.
Recovered otoliths from pinniped feces provide valuable information on diet composition and prey size. We studied the effect of meal size on otolith recovery from the feces of one harbor and eight gray seal pups. Each of 11 experiments comprised a half-ration meal, a period of fecal collection, a 1.5-or double-ration meal again followed by a period of fecal collection. A significantly lower percentage of Atlantic herring otoliths were recovered from half-ration meals (25%± 12.5% in the harbor seal, 8.6%± 6.9% in eight gray seals) than from 1.5- or double-ration meals (62.5%± 3.1 % in the harbor seal, 32.8%± 23.5% in gray seals). Meal size also significantly affected the percentage of Atlantic cod otoliths recovered from gray seal feces (65.0%± 26.3% from half ration, 98.3%± 2.9% from 1.5 ration). For both size meals, recovered cod otoliths were more significantly eroded than herring otoliths. The development of correction factors to account for the effects of digestion will need to consider the distribution of meal sizes of free-ranging pinnipeds.  相似文献   

17.
Respiratory, metabolic, and cardiovascular responses to swimming were examined in two species of pinniped, the harbor seal (Phoca vitulina) and the California sea lion (Zalophus californianus). 1. Harbor seals remained submerged for 82-92% of the time at swimming speeds below 1.2 m.s-1. At higher speeds, including simulated speeds above 1.4 m.s-1, the percentage of time spent submerged decreased, and was inversely related to body weight. In contrast, the percentage of time spent submerged did not change with speed for sea lions swimming from 0.5 m.s-1 to 4.0 m.s-1. 2. During swimming, harbor seals showed a distinct breathhold bradycardia and ventilatory tachycardia that were independent of swimming speed. Average heart rate was 137 beats.min-1 when swimming on the water surface and 50 beats.min-1 when submerged. A bimodal pattern of heart rate also occurred in sea lions, but was not as pronounced as in the seals. 3. The weighted average heart rate (WAHR), calculated from measured heart rate and the percentage time spent on the water surface or submerged, increased linearly with swimming speed for both species. The graded increase in heart rate with exercise load is similar to the response observed for terrestrial mammals. 4. The rate of oxygen consumption increased exponentially with swimming speed in both seals and sea lions. The minimum cost of transport calculated from these rates ranged from 2.3 to 3.6 J.m-1.kg-1, and was 2.5-4.0 times the level predicted for similarly-sized salmonids. Despite different modes of propulsion and physiological responses to swimming, these pinnipeds demonstrate similar transport costs.  相似文献   

18.
Newborn southern elephant seal pups were reported by Laws (1953) to be "to some extent poikilothermic at birth." Rectal temperatures of known age southern elephant seal pups were recorded during the 1985 pupping season at Macquarie Island. The mean pup rectal temperature was found to be 381°C ± 0.1°C SEM ( n = 131, range = 36.5°-39.1°C). Pups at two hours, six hours, and one day after birth had significantly higher rectal temperatures than pups two, three, or four days of age. Rectal temperatures of neonatal southern elephant seals were within the range observed for other pinnipeds, (but never as low as the 31°C previously observed for southern elephant seals at Signy Island in 1953). A significant though weak positive correlation was found between pup temperature and body weight. However, no correlation between pup temperature and age or any environmental factor was found. These observations demonstrated that southern elephant seal pups at Macquarie Island are homeothermic, rather than heterothermic from birth.  相似文献   

19.
20.
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals’ vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号