首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘晓娟  孙学刚  田青 《生态学报》2016,36(10):2905-2913
在甘肃盐池湾国家级自然保护区内海拔4137 m处,选择典型的囊种草垫状植被设置研究样地,研究了垫状植物囊种草对群落物种组成和群落物种多样性的影响,并且定量的研究了囊种草对群落物种丰富度的影响能力和维持潜力。研究结果表明:囊种草为群落中增加了新的植物种类,并且提高了部分生境一般种的多度;囊种草的出现提高了群落物种密度和物种丰富度,进而提高了群落物种多样性;囊种草斑块的增加将会引起景观水平物种丰富度的增加,表明囊种草具有为群落中引入新的植物种类进而提高群落物种丰富度的能力;在景观水平,囊种草所创造的生境多样性则成为一种保障,可以维持景观中物种丰富度从而降低物种损失的风险,表明囊种草具有较高的群落物种丰富度维持潜力。  相似文献   

2.
Question: Is there a difference in plant species and life form composition between two major patch types at a biome transition zone? Are subordinate species associated with different patch types at the shortgrass steppe — Chihuahuan desert grassland transition zone? Is this association related to differences in soil texture between patch types and the geographic range of associated species? Location: central New Mexico, USA. Methods: Patches dominated by either Bouteloua gracilis, the dominant species in the shortgrass steppe, or Bouteloua eriopoda, dominant species in the Chihuahuan desert grasslands, were sampled for the occurrence of subordinate species and soil texture within a 1500‐ha transitional mosaic of patches. Results: Of the 52 subordinate species analysed, 16 species were associated with B. gracilis‐dominated patches and 12 species with B. eriopoda‐dominated patches. Patches dominated by B. gracilis were richer in annual grasses and forbs, whereas patches dominated by B. eriopoda contained more perennials forbs and shrubs. Soils of B. gracilis‐dominated patches had higher clay and lower rock contents compared with soils of B. eriopoda‐dominated patches. Differences in species characteristics of the dominant species as well as differences in soil texture between patch types contribute to patch‐scale variation in composition. The association of species to patch types was not related to their geographic range and occurrence in the adjacent biomes. Conclusions: Patch types at this biome transition zone have characteristic life‐form and species composition, but species are associated to patch types due to local constraints, independently from their affinity to the adjacent biomes.  相似文献   

3.
Questions: 1. Do the species composition, richness and diversity of sapling communities vary significantly in differently sized patches? 2. Do forest patches of different sizes differ in woody plant colonization patterns? Location: São Francisco de Paula, Rio Grande do Sul, Brazil, 29°28'S,50°13'W. Methods: Three woody vegetation types, differing in structural development (patch size) and recovering for 10 years from cattle and burning disturbances, were sampled on grassland. We analysed the composition and complexity of the woody sapling communities, through relative abundance, richness and diversity patterns. We also evaluated recruitment status (residents vs. colonizers) of species in communities occurring in different forest patch size classes. Results : 1. There is a compositional gradient in sapling communities strongly associated with forest patch area. 2. Richness and diversity are positively correlated to patch area, but only in poorly structured patches; large patches present richness and diversity values similar to small patches. 3. Resident to colonizer abundance ratio increases from nurse plants to large patches. The species number proportion between residents and colonizers is similar in small and large patches and did not differ between these patch types. 4. Large patches presented a high number of exclusive species, while nurse plants and small patches did not. Conclusions: Woody plant communities in Araucaria forest patches are associated with patch structure development. Richness and diversity patterns are linked to patch colonization patterns. Generalist species colonize the understorey of nurse plants and small patches; resident species cannot recruit many new individuals. In large patches, sapling recruitment by resident adults precludes the immigration of new species into the patches, limiting richness and diversity.  相似文献   

4.
Biogenic habitat creation refers to the ability of some organisms to create, maintain or destroy habitats. These habitat changes affect species diversity of natural communities, but it remains to be elucidated if this process also affects the link between ecosystem functions and species diversity. Based on the widely accepted positive relationships between ecosystem functions and species diversity, we hypothesize that these relationships should be different in biogenically created habitat patches as compared to unmodified habitat patches. We tested this hypothesis by assessing the effects of a high-Andean cushion plant, Azorella madreporica, which creates habitat patches with different environmental conditions than in the surrounding open areas with reduced vegetation cover. We used observational and experimental approaches to compare the plant biomass–species richness relationships between habitat patches created by A. madreporica cushions and the surrounding habitat without cushion plants. The observational assessment of these relationships was conducted by counting and collecting plant species within and outside cushion patches. In the experiment, species richness was manipulated within and outside cushion patches. The cushion plant itself was not included in these approaches because we were interested in measuring its effects. Results of both approaches indicated that, for a given level of species richness, plant biomass within cushions was higher than in the surrounding open areas. Furthermore, both approaches indicated that the shape of plant biomass–species richness curves differed between these habitat types. These findings suggest that habitat modifications performed by A. madreporica cushions would be positively affecting the relationships between ecosystem functions and species diversity.  相似文献   

5.
The impact of herbivores on herbaceous plant communities is usually attributed to direct consumption of plants. We hypothesized that goats affect herbaceous plants both directly (consumption by foraging) and indirectly, by changing environmental conditions through modification of woody plant structure. We assessed the effects of goats browsing on environmental conditions, landscape structure, and herbaceous plants to link the direct and indirect effects of goats on herbaceous communities. Our model system was the Mediterranean woodland in Mt. Carmel, Israel. This is a two-phase mosaic landscape, composed of herbaceous (open) and woody patches. We delineated 10 plots of 1000 m2, goats were introduced to five plots and five plots remained without goats. We monitored plant species richness and composition in two adjacent patch types (woody and open) in each plot. For each patch type, in all plots, we collected data on environmental conditions. We analyzed landscape structure using landscape metrics derived from a high-resolution vegetation map. We found that goats modified the structure of woody plants and hence the landscape mosaic. This alteration was associated with changes in environmental conditions, with more light penetration and higher temperatures. The impact of goats on the herbaceous plant community depended on patch type. In open patches, goats affected the herbaceous community mostly by direct consumption, whereas in woody patches they affected the herbaceous community mainly by modification of abiotic conditions. Our results stress the importance of considering landscape and patch structure in analyzing the effect of herbivory on plant communities.  相似文献   

6.
The dynamics of re-colonisation of disturbed patches may aid in the understanding of spatial variation of species richness. The present study experimentally tested the hypothesis that the variation of litter ant local species richness and composition is caused by the dynamics of re-colonisation after disturbances. We were particularly interested in whether the re-colonisation was by pre-existent species or species new to the patches, and whether the succession of species evidences the existence of dominance-controlled or founder-controlled communities. Litter patches of a forest remnant in Southeast Brazil were disturbed by removing most animals through litter drying, and litter samples were returned to the same sites from where they were removed. Ant species richness and composition were compared before and 2 months after the disturbance. Dissimilarity among disturbed and non-disturbed samples was compared to infer the succession model occurring after disturbance. Ant species richness did not recover after 2 months, and species composition of the disturbed samples showed more new colonisers than pre-existent species. Dissimilarity among samples in the disturbed plots was smaller than in the control plots, indicating a directional, or dominance-controlled, succession. The changes in species composition observed were caused by a decrease of some species, particularly predators, and an increase of species that are possibly opportunistic. Patches of litter are naturally disturbed in time and space, and evidence from the present paper indicates that succession occurring in these patches would lead to different species richness and compositions. Thus the dynamics of re-colonisation contributes to explaining the diversity of litter-dwelling ant communities at larger spatial and temporal scales. In each patch the succession seems to be directional, with opportunist species re-colonising preferentially empty plots. Therefore, these communities may attain a high diversity due to a small-scale patch dynamics model.  相似文献   

7.
Human‐induced alteration of habitat is a major threat to biodiversity worldwide, especially in areas of high biological diversity and endemism. Polylepis (Rosaceae) forest, a unique forest habitat in the high Andes of South America, presently occurs as small and isolated patches in grassland dominated landscapes. We examine how the avian community is likely influenced by patch characteristics (i.e., area, plant species composition) and connectivity in a landscape composed of patches of Polylepis forest surrounded by páramo grasslands in Cajas National Park in the Andes of southern Ecuador. We used generalized linear mixed models and an information‐theoretic approach to identify the most important variables probably influencing birds inhabiting 26 forest patches. Our results indicated that species richness was associated with area of a patch and floristic composition, particularly the presence of Gynoxys (Asteraceae). However, connectivity of patches probably influenced the abundance of forest and generalists species. Elsewhere, it has been proposed that effective management plans for birds using Polylepis should promote the conservation of mature Polylepis patches. Our results not only suggest this but also show that there are additional factors, such as the presence of Gynoxys plants, which will probably play a role in conservation of birds. More generally, these findings show that while easily measured attributes of the patch and landscape may provide some insights into what influences patch use by birds, knowledge of other factors, such as plant species composition, is essential for better understanding the distribution of birds in fragmented landscapes.  相似文献   

8.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

9.
Symbiotic associations between plants and arbuscular mycorrhizal (AM) fungi are ubiquitous in many herbaceous plant communities and can have large effects on these communities and ecosystem processes. The extent of species-specificity between these plant and fungal symbionts in nature is poorly known, yet reciprocal effects of the composition of plant and soil microbe communities is an important assumption of recent theoretical models of plant community structure. In grassland ecosystems, host plant species may have an important role in determining development and sporulation of AM fungi and patterns of fungal species composition and diversity. In this study, the effects of five different host plant species [Poa pratensis L., Sporobolus heterolepis (A. Gray) A. Gray, Panicum virgatum L., Baptisia bracteata Muhl. ex Ell., Solidago missouriensis Nutt.] on spore communities of AM fungi in tallgrass prairie were examined. Spore abundances and species composition of fungal communities of soil samples collected from patches within tallgrass prairie were significantly influenced by the host plant species that dominated the patch. The AM fungal spore community associated with B. bracteata showed the highest species diversity and the fungi associated with Pa. virgatum showed the lowest diversity. Results from sorghum trap cultures using soil collected from under different host plant species showed differential sporulations of AM fungal species. In addition, a greenhouse study was conducted in which different host plant species were grown in similar tallgrass prairie soil. After 4 months of growth, AM fungal species composition was significantly different beneath each host species. These results strongly suggest that AM fungi show some degree of host-specificity and are not randomly distributed in tallgrass prairie. The demonstration that host plant species composition influences AM fungal species composition provides support for current feedback models predicting strong regulatory effects of soil communities on plant community structure. Differential responses of AM fungi to host plant species may also play an important role in the regulation of species composition and diversity in AM fungal communities. Received: 29 January 1999 / Accepted: 20 October 1999  相似文献   

10.
The introduced tree species Spathodea campanulata (Bignoniaceae) forms novel forests in Puerto Rico, these having emerged after the abandonment of fields in the mid‐20th century and resulting in forests with a new species composition. We assessed bryophyte species richness in these novel forests and sought correlations with geological substrate, past land use, forest edge and patch area, forest structure, elevation, microhabitat diversity, tree species richness, and microclimatic conditions. Transects were established (edge and forest interior) in nine moist forest patches dominated by Spathodea in north‐central Puerto Rico. These Spathodea forest patches ranged from 0.6 to 9 ha. ANOVA, Chi‐square, correlation, and cluster analyses were used in data analyses. We found 57 bryophyte species. There was a significant difference in bryophyte richness among patches. Those on karst exhibited highest bryophyte richness due to microhabitat diversity, past land use, and shorter hydroperiods. Alluvial sites scored lowest in bryophyte species richness, and forest structure was important for bryophyte communities on these sites. Significant differences in temperature, relative humidity, and light intensity were observed between edge and forest interior. These appeared important for establishing bryophyte species cover but not richness and composition. Microhabitat diversity, patch area, and forest age were more related to bryophyte species richness than elevation, exposed edge, and tree species richness, regardless of geologic substrate. Collectively, Spathodea patches were similar to mature forests on the Island with respect to bryophyte species richness and composition. Novel Spathodea forests have conservation value due to their habitat suitability for bryophyte communities.  相似文献   

11.
Petr Sklenář 《Flora》2009,204(4):270-277
Cushion plants are a common growth form in the equatorial páramo vegetation and their surfaces are often colonized by other plants. This paper analyzes the effect of the cushion plants on the community diversity at 4650 m on the eastern slope of the Iliniza volcano in Ecuador. Ninety sample plots of 1 m2 size were located in the study area and were divided into 25 subplots in which presence and abundance of plant species was recorded. The community diversity was expressed as species richness, Simpson's diversity index, and evenness. Correlation between the cushion species and the composition of the colonists was measured with the CCA ordination analysis, correlation between the cushion cover and community diversity was measured by means of correlation analysis. Randomized species–area curves were used to compare richness of plant communities with and without the cushions. A total of 32 species were found including five cushion plants. Most species preferred to grow on the cushion surface whereas only a few species were able to colonize open ground. Species richness and Simpson's index were significantly correlated to the cushion area but no correlation was found for evenness. The cushions were usually composed of more than one species which hampered the examination of the cushion–colonist specific relationships. Nevertheless, cushions of Azorella and Arenaria seemed to provide more favorable habitat for colonization than the other cushion species. Comparison with an earlier study made on Iliniza indicates that the presence of the cushions significantly increases the richness of the plant community.  相似文献   

12.
1. The spatial structure of plant patches has been shown to affect host–parasitoid interactions, but its influence on parasitoid diversity remains largely ignored. Here we tested the prediction that parasitoid species richness of the specialist leafminer Liriomyza commelinae increases in larger and less isolated patches of its host plant Commelina erecta. We also explored whether parasitoid abundance and body size affected the occurrence of parasitoid species in local assemblages. 2. A total of 893 naturally established C. erecta patches were sampled on 18 sites around Córdoba city (Argentina). Also, two experiments were performed by creating patches differing in the number of plants and the distance from a parasitoid source. For these tests, plants were infected with the miner in the laboratory prior to placement in the field. 3. Plant patch size, independently of host abundance, positively affected the number of parasitoid species in both survey observations and experimental data. However, plant patch isolation did not influence parasitoid species richness. 4. The probability of finding rare parasitoid species increased with patch size, whereas occupation of isolated patches was independent of dispersal abilities (body size) of parasitoid species. 5. Overall, the results highlight the importance of considering spatial aspects such as the size of plant patches in the study of parasitoid communities.  相似文献   

13.
Abstract. Our objective was to evaluate the effects of burrowing activities by banner-tail kangaroo rats (Dipodomys spectabilis Merriam) on plant community structure and species dominance for two patch types at the ecotone between shortgrass steppe and desert grassland in New Mexico, USA. 10 mounds produced by kangaroo rats were selected in patches dominated by Bouteloua gracilis (the dominant in shortgrass steppe communities) and 10 mounds were selected in patches dominated by B. eriopoda (the dominant in Chihuahuan desert grasslands). Plant cover and density by species were sampled from three locations associated with each mound: the mound proper, the edge of the mound in the transition area, and the off-mound vegetation. Similar cover of B. eriopoda for the edges of mounds in both patch types indicates the ability of this species to respond to animal disturbances regardless of the amount of cover in the surrounding undisturbed vegetation. By contrast, cover of B. gracilis was low for all mounds and mound edges in patches dominated by this species. Much higher cover of B. eriopoda on mound edges compared to the undisturbed vegetation in B. gracilis-dominated patches indicates that kangaroo rats have important positive effects on this species. Lower cover of perennial grasses and higher cover of forbs, shrubs, and succulents on the edges of mounds in B. eriopoda-dominated patches compared to patches dominated by B. gracilis indicate the importance of surrounding vegetation to plant responses on disturbed areas. Our results show that kangaroo rats have important effects on both species dominance and composition for different patch types, and may provide a mechanism for small-scale dominance patterns at an ecotone; thus providing further support for their role as keystone species in desert grasslands.  相似文献   

14.
The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind‐exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge‐to‐snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag‐encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.  相似文献   

15.
Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long‐term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass‐dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum‐dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass‐dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass‐dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass‐dominated plots. Despite large differences in abundances and species richness, Simpson’s D diversity and Shannon‐Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass‐dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass‐dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate.  相似文献   

16.
The size of the local species pool (i.e., species surrounding a community capable of dispersal into that community) and other dispersal limitations strongly influence native plant community composition. However, the role that the local species pool plays in determining the invasibility of communities by exotic plants remains to be evaluated. We hypothesized that the richness and abundance of exotic species would be greater in C4‐dominated grassland communities if the local species pool included a larger proportion of exotic species. We also predicted that an increase in the exotic species pool would increase the invasibility of sites thought to be resistant to invasion (annually burned grassland). To test these hypotheses, study plots were established within two long‐term (>20 yr) fire experiments at a tallgrass prairie preserve in NE Kansas (USA). Study plots were surrounded by either a small pool of exotic species (small species pool (SSP) plots; six species) or a larger exotic species pool (large species pool (LSP) plots; 18 species). We found that richness and absolute cover of exotic species was significantly (P<0.001) lower (~70 and 90%, respectively) in annually burned compared to unburned plots, regardless of the size of the exotic species pool. As predicted, exotic species richness was higher (P<0.001) for LSP plots (3.9 per 250 m2) than for SSP plots (0.7 per 250 m2); however, absolute cover was unaffected by the size of the exotic species pool. In the absence of fire, plots with a LSP had four times as many exotic species than SSP plots. An increase in the local exotic species pool also increased the invasibility of annually burned grassland. Indeed, richness of exotic plant species in annually burned LSP plots did not differ from unburned plots with a SSP, indicating that a larger pool of exotic species countered the negative effects of fire. These findings have important implications for predicting how the invasion of plant communities may respond to human‐induced global changes, such as habitat fragmentation. Community characteristics or factors such as frequent fires in grasslands may impart resistance to invasions by exotic species in large, intact ecosystems. However, when a large pool of exotic species is present, frequent fire may not be sufficient to limit the invasions of exotic plants in fragmented landscapes.  相似文献   

17.
Question: Does increasing Festuca canopy cover reduce plant species richness and, therefore, alter plant community composition and the relationship of litter to species richness in old‐field grassland? Location: Southeastern Oklahoma, USA. Methods: Canopy cover by species, species richness, and litter mass were collected within an old‐field grassland site on 16, 40 m × 40 m plots. Our study was conducted during the first three years of a long‐term study that investigated the effects of low‐level nitrogen enrichment and small mammal herbivory manipulations. Results: Succession was altered by an increase in abundance of Festuca over the 3‐yr study period. Species richness did not decline with litter accumulation. Instead, Festuca increased most on species‐poor plots, and Festuca abundance remained low on species‐rich plots. Conclusions: Festuca may act as an invasive transformer‐species in warm‐season dominated old‐field grasslands, a phenomenon associated more with invasions of cool‐season grasses at higher latitudes in North America.  相似文献   

18.
Abstract. Patches of herbaceous vegetation found at the boundary of the alpine and subnival belts in the Central Caucasus (3000 m) were analysed for species composition, interspecific associations, as well as for relations between age, size and diversity of the patches. 34 plant species were recorded. Positive and negative associations were found among the most frequent species. A model is presented that describes the cumulation of species in patches during succession. In the final and stable successional stage, the maximum number of species within a patch was nine. Species composition varies in patches of different age, typical alpine species being more frequent in older ones. The results are interpreted as evidence for niche differentiation and selection of species composition through the 'sieve’ of interspecific relations, taking place during succession in the studied patches.  相似文献   

19.
Abstract. Communities formed by the potentially invasive European Ammophila arenaria (marram grass) are compared with those dominated by indigenous dune plant species in coastal dune systems. Sampling of communities was carried out along the Cape coast for species richness, species diversity, importance values and species associations. The influence of soil and other environmental factors on vegetation were also compared. While species richness values in A. arenaria communities appear similar to those of indigenous dune plant communities, diversity indices are significantly lower. However, on the basis of importance values of individual species, A. arenaria does not show extreme dominance to the exclusion of other species, as it does on the North American Pacific coast, where it has also been introduced. Because of its growth in dense tufts, A. arenaria is accompanied mostly by small chamaephytes and therophytes, while indigenous stands support more phanerophytes. Moreover, A. arenaria forms weaker species associations than dominant indigenous dune plant species. The alien status of A. arenaria in South Africa is confirmed by applying classification and ordination analyses which failed to differentiate A. arenaria communities according to their geographical origin as achieved with indigenous communities. This may be attributed to the lack of vigorous indigenous plants in A. arenaria communities, which accounts for the low variety in species composition of A. arenaria communities along the coastline. With regard to environmental factors, A. arenaria communities were observed to be less sensitive to extrinsic factors, such as climate, than indigenous dune plant communities. Results confirm that A. arenaria is an alien plant species in South Africa, but do not imply its invasiveness in the present or near future.  相似文献   

20.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号