首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract. 39 species of vascular epiphytes were found in a 625-m2 plot in a cloud forest in Veracruz, Mexico. Epiphyte biomass was estimated for all species in six zones distinguished on each tree > 10 cm in DBH: stem base, lower stem, upper stem, branches > 20 cm, branches from 5 — 20 cm and branches < 5 cm diameter. Branches were additionally separated according to their position in the upper, middle or lower canopy. Total dry matter of green organs was 318 kg/ha. Dominance/diversity curves fitted best to the lognormal model. Principal Coordinate Analysis showed that canopy height and branch thickness are both important factors and also that the stem base was the most distinct zone. Microhabitat preferences and niche overlap of the frequent species proved some degree of resource partitioning within the canopy. Ecophysiological characters possibly responsible for these preferences and implications for conservation are discussed.  相似文献   

2.
Abstract. Vascular epiphytes were studied in forests at altitudes from 720 to 2370 m on the Atlantic slope of central Veracruz, Mexico. The biomass of all trees of each species > 10 cm diameter at breast height within plots between 625 and 1500 m2 was estimated. The number of species per plot ranged between 22 and 53, and biomass between 9 and 249 g dry weight/m2. The highest values, both of species and biomass, were found at an intermediate altitude (1430 m). Habitat diversity may contribute to epiphyte diversity in humid forests, but the importance of this effect could not be distinguished from the influence of climate. A remarkably high number of bromeliads and orchids grew in relatively dry forests at low altitudes. In wet upper montane forests, bromeliads were replaced by ferns, while orchids were numerous at all sites, except for a pine forest. The number of epiphytic species and their biomass on a tree of a given site were closely related to tree size. According to Canonical Correspondence Analysis, the factor determining the composition of the epiphytic vegetation of a tree was altitude and to some extent tree size, whereas tree species had practically no influence. The only trees which had an evidently negative effect on epiphytes were pines, which were particularly hostile to orchids and to a lesser degree to ferns, and Bursera simaruba, which generally had few epiphytes due to its smooth and defoliating bark.  相似文献   

3.
Abstract. Large isolated trees are a common feature of the agricultural landscape in humid tropical regions originally covered by rain forest. These isolated trees are primarily used as a source of shade for cattle and people. 13 pastures (totalling ca. 80 ha) currently used as cattle pasture were studied. In them, we registered 265 isolated trees belonging to 57 species. 50 trees of the most frequent species (Ficus spp. n = 30 and Nectandra ambigens n = 20) were selected to examine the influence of isolated trees on floristic composition and vegetation structure in the pastures. At each tree, three 4–m2 quadrats were sampled: under the canopy, directly under the canopy perimeter, and beyond the canopy in the open pasture. Under-canopy vegetation was structurally and floristically different from the other two sampling sites. Mean species richness per quadrat was significantly higher under the canopy (17.8 ± 4.3 SD) than at the canopy perimeter (11.2 ± 3.4) and in the open pasture (10.6 ± 3.6) sites. Stem density was higher at under-canopy sites, where greater proportions of endozoochorous and rain-forest species were found. Isolated trees function as nursery plants for rain-forest species by facilitating the establishment of zoochorous species whose seeds are deposited under the tree canopies by frugivorous birds or bats. Our results imply that isolated trees may play a major role in seed dispersal and establishment of native species, which is of consequence for the preservation of rain-forest species in these fragmented landscapes.  相似文献   

4.
Abstract. We studied primary succession on mobile tropical coastal sand dunes over an 8‐yr period. Every six months, we monitored changes in species composition and sand movement in permanent quadrats located on the windward slopes, the arms and the crests. Our results indicate that sand movement decreased over time but was significantly higher on the slopes and crests than on the arms. In all cases, there were seasonal fluctuations in sand movement which increased during the period with strong northerly winds and decreased during the rainy season. Sand movement was significantly correlated with species distribution. Plant cover and species richness increased at all three locations. Diversity increased on the slope, decreased on the arms and remained unchanged on the crest. However, the equitability values indicated the dominance of a few species, especially at the end of the study period. Temporal trends and species turnover rates differed among locations. Species turnover occurred first on the arms (1994), then on the crests (1998) and lastly on the slopes (at the end of the study period). In all cases the tall grass, Schizachyrium scoparium var. littoralis, became dominant over the endemic legume, Chamaecrista chamaecristoides var. chamaecristoides. Similar to temperate dunes, primary succession on tropical sand dunes was spatially and temporally heterogeneous.  相似文献   

5.
Abstract. Distribution patterns of coastal sand dune plant communities in the Circeo National Park (Central Italy) are quantified and compared by measuring spatial connectivity and richness of community boundaries along the dune profile. The purpose of this study is: (1) to evaluate patchiness and frequency of spatial links between communities; (2) to identify the communities most sensitive to disturbance; and (3) to predict probable changes due to modification of spatial zonation. Data were obtained using belt transects across the Holocene coastal dune zone. Vegetation zonation from the seashore to the foredune slacks is analysed in relation to chorological, phytosociological and life‐form types. We found that under relatively undisturbed environmental conditions communities formed a sequence (communities 1 to 7), with the exception of a replacement community, which occupied gaps in the perennial vegetation. The spatial distribution of some communities was reduced as a consequence of disturbance; others became fragmented in small patches or even disappeared. In coastal environments with strong, complex gradients, the existence of certain communities depends on specific links (neighbourhood effects) and high connectivity values do not indicate better conservation conditions.  相似文献   

6.
Abstract. The germinable soil seed bank is described from a coastal barrier island off the northwest coast of Florida, USA. Soil samples collected from seven vegetation types, recently deposited dredge spoil and unvegetated areas in autumn 1990 and spring 1991 were placed out in greenhouse trays. 110 taxa germinated from the samples with the largest number (41) being C3 perennial dicots. The largest number of taxa germinated from dry (57) and wet (54) swales, the fewest (one species: Heterotheca subaxillaris) from strand. Similarity of seed bank densities to above-ground species cover was low (Jaccard's Index = 0.36), not different between vegetation types, but higher in the autumn than in the following spring. Compositional gradients in the seed bank and above-ground vegetation determined using DCA ordination were highly correlated and related to distance from mean high water, and plot elevation. At the landscape scale, the seed bank provided an equally clear delineation of vegetation types to that based upon the above-ground vegetation. The seed bank of low disturbance, late-succession vegetation types (wooded dunes, swales, marshes) was well developed (high species richness, emergent density, and percentage annual species) with the exception that the large-seeded woody species (i.e. Quercus spp.) were absent from the wooded dune seed bank. By contrast, a poorly developed and transient seed bank occurred in more frequently disturbed (extensive sand movement, salt spray), early successional dredge spoil, unvegetated areas and strand. These contrasts support a general pattern of increasing seed bank development and a persistent rather than transient seed bank with decreasing disturbance frequency, increasing time since disturbance and successional maturity.  相似文献   

7.
Abstract. Vegetation zonation in salt marshes has traditionally been attributed largely to altitudinal differences, since altitude determines the temporal pattern of tidal flooding and is thus closely related to proximate determinants of the distribution of species and plant communities. We investigated the distribution of vascular plants and plant communities along a series of altitudinal transects in two salt marshes in the northwestern Iberian Peninsula. Our results indicate that altitudinal range varies significantly both among species and among communities, and confirm that salt-marsh vegetation characteristics (species cover and composition) can be predicted on the basis of altitude, particularly at the lower levels of the profile.  相似文献   

8.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

9.
Abstract. Treefalls are a common form of disturbance in northeastern United States forests. The resultant gaps contribute to a high degree of environmental heterogeneity in the understory of these forests. Plant density, plant cover, and species richness in understory plant communities were monitored for three years during the growing season, May - September. Differences between treefall gap and closed canopy vegetation were less pronounced early in the growing season for plant density and leaf cover. Species richness was significantly greater within treefall gaps during the entire growing season. Eight species were found in greater abundance within treefall gaps (i.e., gap-phase species), while one species was found more commonly under closed canopy. Ordination results suggest that time since gap creation and treefall gap size marginally affect the species composition of vegetation found within treefall gaps.  相似文献   

10.
The focus of this study is the relationship between water table depth (WTD) and water vapor [evapotranspiration (ET)] and carbon dioxide [CO2; net ecosystem exchange (NEE)] fluxes in a fen in western Canada. We analyzed hydrological and eddy covariance measurements from four snow‐free periods (2003–2006) with contrasting meteorological conditions to establish the link between daily WTD and ET and gross ecosystem CO2 exchange (GEE) and ecosystem respiration (Reco; NEE=Reco?GEE), respectively: 2003 was warm and dry, 2004 was cool and wet, and 2005 and 2006 were both wet. In 2003, the water table (WT) was below the ground surface. In 2004, the WT rose above the ground surface, and in 2005 and 2006, the WT stayed well above the ground surface. There were no significant differences in total ET (~316 mm period?1), but total NEE was significantly different (2003: 8 g C m?2 period?1; 2004: ?139 g C m?2 period?1; 2005: ?163 g C m?2 period?1; 2006: ?195 g C m?2 period?1), mostly due to differences in total GEE (2003: 327 g C m?2 period?1; 2004: 513 g C m?2 period?1; 2005: 411 g C m?2 period?1; 2006: 556 g C m?2 period?1). Variation in ET is mostly explained by radiation (67%), and the contribution of WTD is only minor (33%). WTD controls the compensating contributions of different land surface components, resulting in similar total ET regardless of the hydrological conditions. WTD and temperature each contribute about half to the explained variation in GEE up to a threshold ponding depth, below which temperature alone is the key explanatory variable. WTD is only of minor importance for the variation in Reco, which is mainly controlled by temperature. Our study implies that future peatland modeling efforts explicitly consider topographic and hydrogeological influences on WTD.  相似文献   

11.
12.
Shrubland vegetation and environmental data in western Shewa, Ethiopia have been analysed. Vegetation data include cover-abundance values of vascular plant species; environmental data comprise physical and chemical properties of the soil, altitude, slope, grazing and browsing pressure. The vegetation data were subj ected to hierarchical and non-hierarchical classification and ordination with correspondence analysis. The classification resulted in seven different vegetation types, ranging from grassland with scattered shrubs to degenerated forest. Ordination of the data and biplot analysis showed that the vegetation is influenced by anthropogenic factors and altitudinal variation. Sand content is related to a low level of anthropogenic influence whereas silt content is related to a high level. This is explained by historical events rather than by the present situation. Total nitrogen, organic carbon, altitude and slope are positively correlated and these variables are negatively related to anthropogenic influences. The shrubland vegetation may have expanded from lower altitudes and drier sites as forests gradually disappeared. The recovery of an economically more rewarding vegetation type may be achieved through pro viding alternative sources of fuel and construction and through prohibiting cultivation and grazing in the shrublands on the hillsides. Regeneration can be accelerated by actively introducing seedlings of tree species that do not need a heavy canopy cover for establishment and growth.  相似文献   

13.
Abstract. Persistence and colonization of submersed aquatic plant species were studied in permanent plots (20 cm × 20 cm) at three shallow sites adjacent to Askö island, in the northern Baltic Sea. The study started in 1991 at two of the sites, in 1992 at a third site and continued until 1997. Two major weather‐induced disturbances occurred during the study: a long, stormy period during a mild winter and a cold winter with extreme low water levels. The stormy period caused a large loss of species from plots (95 ± 5% SE) at the most wave‐exposed site, resulting in a low species number per plot (0.8 ± 0.2) the following summer. During the three following years the mean species number increased to 3.6 ± 0.2. The cold winter caused high species turnover and increased species number per plot at the two most wave‐exposed sites. The species turnover at the sheltered site was highest in the two years with low water level in May, possibly due to increased waterfowl herbivory. Annuals, loosely anchored and highly reproductive species had significantly higher plot colonization rates and lower persistence than perennials, well‐anchored species and species with none or low reproduction. The extent of lateral growth had no significant effect on colonization or persistence. Although these disturbances have a large effect on the dynamics, species mobility was also high in other years. Relative to other, similar, studies in terrestrial vegetation mean persistence in plots was remarkably low and mean mobility and species turnover rates were very high.  相似文献   

14.
Abstract. The effects of disturbance and microtopography on the organization and dynamics of plant communities were studied in a European salt marsh located in the Bay of Mont St. Michel, France. The existence of seed trapping mechanisms was also tested. The study took place in the lower and middle marsh plant communities dominated by the perennials Puccinellia maritima and Halimione portulacoides, respectively and associated with the annual Suaeda maritima. Three treatments were used in series of plots placed in each community: (1) vegetation removal and root destruction to a depth of 10 cm and refilling, (2) non‐remnant herbicide treatment without vegetation removal and (3) creation of depressions (20 cm deep). These treatments were compared with adjacent control plots. The first year of the experiment showed that the perennials facilitated the establishment of Suaeda by trapping its seeds. Estimation of cover, density and biomass over 5 yr following the disturbances showed that in the first 2 yr Suaeda dominated the disturbed plots. Thereafter Suaeda was gradually eliminated by competitive exclusion after ca. 3 yr in the zone originally dominated by Puccinellia maritima and after 4 yr in the zone occupied by Halimione portulacoides. Depressions constituted refuge habitats for Suaeda by limiting competition with the perennials but also led to a high risk of mortality with temporal fluctuations in density. Despite a period of investigation limited to 5 yr, our study demonstrated that natural disturbances of various types occurred and influenced the dynamics of Suaeda, Halimione and Puccinellia. We deduced that natural disturbances and microtopography are responsible for the maintenance of the habitat in a state of non‐equilibrium by favouring the establishment of both spatial and temporal environmental heterogeneity. These conditions appear to be particularly favourable for the maintenance of annual species such as Suaeda maritima.  相似文献   

15.
Abstract. Throughout the eastern United States, plant species distributions and community patterns have developed in response to heterogeneous environmental conditions and a wide range of historical factors, including complex histories of natural and anthropogenic disturbance. Despite increased recognition of the importance of disturbance in determining forest composition and structure, few studies have assessed the relative influence of current environment and historical factors on modern vegetation, in part because detailed knowledge of prior disturbance is often lacking. In the present study, we investigate modern and historical factors that control vegetation patterns at Harvard Forest in central Massachusetts, USA. Similar to the forested uplands throughout the northeastern United States, the site is physiographically heterogeneous and has a long and complex history of natural and anthropogenic disturbance. However, data on forest composition and disturbance history collected over the past > 90 years allow us to evaluate the importance of historical factors rigorously, which is rarely possible on other sites. Soil analyses and historical sources document four categories of historical land use on areas that are all forested today: cultivated fields, improved pastures/mowings, unimproved pastures, and continuously forested woodlots. Ordination and logistic regressions indicate that although species have responded individualistically to a wide range of environmental and disturbance factors, many species are influenced by three factors: soil drainage, land use history, and C:N ratios. Few species vary in accordance with ionic gradients, damage from the 1938 hurricane, or a 1957 fire. Contrary to our expectation that the effects of disturbance will diminish over time, historical land use predicts 1992 vegetation composition better than 1937 composition, perhaps because historical woodlots have become increasingly differentiated from post-agricultural stands through the 20th century. Interpretations of modern vegetation must consider the importance of historical factors in addition to current environmental conditions. However, because disturbances such as land use practices and wind damage are complex, it is often difficult to detect disturbance effects using multivariate approaches, even when the broad history of disturbance is known.  相似文献   

16.
Abstract. It is important to know how increasing levels of atmospheric CO2 will affect native vegetation. The objective of this study was to determine the effect of elevated CO2 concentrations on species composition in a tallgrass prairie kept at a high water level (730 mm of water in a 2000 mm soil profile) and a low water level (660 mm of water in 2000 mm). 16 cylindrical plastic chambers were placed on the prairie to maintain two levels of CO2 (ambient or twice ambient) during two growing seasons in 1989 and 1990. Frequency of species was determined on 25 July 1989 and on 5 and 10 October 1990. At the beginning of the study, Poa pratensis (Kentucky bluegrass), the dominant C3 species, had the highest frequency of 43.3%, but decreased with time. However, at the end of the experiment and under the high soil-water level, there were more P. pratensis plants in the elevated CO2 treatment (frequency: 13.5%) than in the ambient CO2 treatment (1.0%). Under the low soil water regime, the reverse occurred (frequencies: 3.6% and 11.0% for high and low CO2, respectively). The frequency of major C4 plants, Andropogon gerardii (big bluestem), A. scoparius (little bluestem) and Sorghastrum nutans (Indian grass) was not affected by CO2. However, water did affect their frequency. Under low water, the frequency of A. gerardii decreased between 1989 and 1990. Under both soil moisture levels, the frequencies of S. nutans and A. scoparius increased. At the end of the study, Indian grass grown with high water had the highest frequency of all species on the prairie (frequency at the end of the study in October, 1990, of 44.4% and 47.4% for the high and low CO2 levels, respectively). Unlike Indian grass, little bluestem grew better under low water conditions than under high water conditions. These results suggest that, if the climate becomes drier, A. scoparius will flourish more than S. nutans or A. gerardii, and P. pratensis may die out. Elevated CO2 might not increase survival of C3 plants under dry conditions, if temperatures are too high for them.  相似文献   

17.
Abstract. Spatial patterns and temporal dynamics of light distribution were investigated using lacunarity analysis, a multi‐scale measure of spatial heterogeneity, in three mesic grasslands with different disturbance regimes. Frequency distributions of relative light intensity (RLI) were similar for the two non‐disturbed grasslands, despite different composition (forbs vs. caespitose grass) resulting from different historical disturbance regimes prior to 1985, and different from the annually disturbed grassland. Spatial heterogeneity of light distribution was greater at all scales in the native, annually disturbed grassland than in the two non‐disturbed grasslands. The disturbance regime affected temporal dynamics of the spatial patterns of light distribution in each grassland. The annually disturbed grassland exhibited a dramatic decrease in lacunarity (heterogeneity) from early to late April, likely the result of considerable growth of a cool‐season grass. A general decrease in lacunarity occurred in the native, non‐disturbed grassland, although the magnitude was much less than in the annually disturbed grassland. The reverted, non‐disturbed grassland did not exhibit an appreciable change in lacunarity until later in the growing season, and then only at smaller scales. Combining the frequency distribution of RLI and the lacunarity curves provided an effective approach to assess relationships between the dynamics of spatial pattern of light distribution and ecological processes as influenced by different disturbance regimes. Integrating lacunarity analysis with more traditional measurements of grassland ecosystems (plant spatial distribution and arrangement and plant species composition and architecture) may be an effective way to assess functional consequences of structural changes in grassland ecosystems.  相似文献   

18.
Questions : What is the variability of succession over a large geographical area? What is the relative importance of (1) local site factors and (2) landscape factors in determining spontaneous vegetation succession? Location : Various regions of the Czech Republic, Central Europe. The regions represent two categories characterized by agrarian lowlands, with a relatively warm and dry climate, and predominant woodland uplands with a relatively cold and wet climate. Methods : Gravel‐sand pits ranged in age from 1–75 years since abandonment. Three types of sites were distinguished: dry, wet and hydric in shallow flooded sites. Vegetation relevés were recorded with species cover (%) visually estimated using the space‐for‐time substitution approach. Local site factors, such as water table and soil characteristics, and landscape characteristics, namely climatic parameters, presence of nearby (semi‐) natural plant communities and main land cover categories in the wider surroundings, were evaluated. Results : Ordination analyses showed that water table was the most important local site factor influencing the course of spontaneous vegetation succession. Succession was further significantly influenced by soil texture, pH, macroclimate, the presence of some nearby (semi‐) natural communities and some land cover categories in the wider surroundings. Spontaneous vegetation succession led to the formation of either shrubby grassland, deciduous woodland, alder and willow carrs, and tall sedge or reed and Typha beds in later stages depending predominantly on the site moisture conditions. Conclusions: Although the water table was the most influential on the course of vegetation succession, the landscape factors together explained more vegetation variability (44%) than local site factors (23%).  相似文献   

19.
The effects of edaphic moisture in anatomical characters were evaluated in two different populations of Carex hirta L. with three watering treatment for 6 months to evaluate stability, and determined taxonomic value. Water availability increased (p < 0.001) leaf thickness from 239 to 289 μm, metaxylem vessel diameter from 17 to 23 μm, air cavity size from 10 to 24% and adaxial epidermal cell height from 18 to 34 μm, and abaxial from 11 to 16 μm, adaxial epidermal cell length from 54 to 105 μm, and abaxial from 35 to 86 μm, and adaxial epidermal cell width from 20 to 33 μm, and abaxial from 15 to 23 μm. Stomatal index and the number of cells in the girder of sclerenchyma did not vary with water availability, hence these traits have taxonomic value. Other characters (the length and amplitude of wall undulations in the epidermal cells, the number of bulliform cells) have a doubtful relation with water availability, because they are variable even in constant homogeneous conditions.  相似文献   

20.
Artemia cysts are composed of an inner mass of about 4000 cells surrounded by an acellular shell. This system can undergo cycles of hydration-dehydration without viability loss, and is a useful model for the study of intracellular water. We have measured the relative permittivity (ε′) of these cysts as a function of water content over the frequency range 0.8–70 GHz. Detailed analysis of the data for cysts containing close to 1 g H2O/g dry weight indicates that a significant fraction of the total water in this system exhibits dielectric behavior different from that of pure water: the distribution parameter (α) for the dispersion analyzed by the Cole-Cole equation deviates from zero, and the permittivity of cyst water appears to be significantly lower than that of pure liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号